test_pag_controlnet_sd.py 9.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    ControlNetModel,
    DDIMScheduler,
    StableDiffusionControlNetPAGPipeline,
    StableDiffusionControlNetPipeline,
    UNet2DConditionModel,
)
31
from diffusers.utils.testing_utils import enable_full_determinism, torch_device
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from diffusers.utils.torch_utils import randn_tensor

from ..pipeline_params import (
    TEXT_TO_IMAGE_BATCH_PARAMS,
    TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
    TEXT_TO_IMAGE_IMAGE_PARAMS,
    TEXT_TO_IMAGE_PARAMS,
)
from ..test_pipelines_common import (
    IPAdapterTesterMixin,
    PipelineFromPipeTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
)


enable_full_determinism()


class StableDiffusionControlNetPAGPipelineFastTests(
    PipelineTesterMixin,
    IPAdapterTesterMixin,
    PipelineLatentTesterMixin,
    PipelineFromPipeTesterMixin,
    unittest.TestCase,
):
    pipeline_class = StableDiffusionControlNetPAGPipeline
    params = TEXT_TO_IMAGE_PARAMS.union({"pag_scale", "pag_adaptive_scale"})
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
    callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"add_text_embeds", "add_time_ids"})

    def get_dummy_components(self, time_cond_proj_dim=None):
        # Copied from tests.pipelines.controlnet.test_controlnet_sdxl.StableDiffusionXLControlNetPipelineFastTests.get_dummy_components
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(4, 8),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=8,
            time_cond_proj_dim=time_cond_proj_dim,
            norm_num_groups=2,
        )
        torch.manual_seed(0)
        controlnet = ControlNetModel(
            block_out_channels=(4, 8),
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            conditioning_embedding_out_channels=(2, 4),
            cross_attention_dim=8,
            norm_num_groups=2,
        )
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[4, 8],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            norm_num_groups=2,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=8,
            intermediate_size=16,
            layer_norm_eps=1e-05,
            num_attention_heads=2,
            num_hidden_layers=2,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
            "image_encoder": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2
        image = randn_tensor(
            (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
            generator=generator,
            device=torch.device(device),
        )

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "pag_scale": 3.0,
            "output_type": "np",
            "image": image,
        }

        return inputs

    def test_pag_disable_enable(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        # base  pipeline (expect same output when pag is disabled)
        pipe_sd = StableDiffusionControlNetPipeline(**components)
        pipe_sd = pipe_sd.to(device)
        pipe_sd.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["pag_scale"]
        assert (
            "pag_scale" not in inspect.signature(pipe_sd.__call__).parameters
Aryan's avatar
Aryan committed
174
        ), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}."
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        out = pipe_sd(**inputs).images[0, -3:, -3:, -1]

        # pag disabled with pag_scale=0.0
        pipe_pag = self.pipeline_class(**components)
        pipe_pag = pipe_pag.to(device)
        pipe_pag.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["pag_scale"] = 0.0
        out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]

        # pag enabled
        pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
        pipe_pag = pipe_pag.to(device)
        pipe_pag.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]

        assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3
        assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3

    def test_pag_cfg(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
        pipe_pag = pipe_pag.to(device)
        pipe_pag.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe_pag(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (
            1,
            64,
            64,
            3,
        ), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}"
        expected_slice = np.array(
            [0.45505235, 0.2785938, 0.16334778, 0.79689944, 0.53095645, 0.40135607, 0.7052706, 0.69065094, 0.41548574]
        )

        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        assert max_diff < 1e-3, f"output is different from expected, {image_slice.flatten()}"

    def test_pag_uncond(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
        pipe_pag = pipe_pag.to(device)
        pipe_pag.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["guidance_scale"] = 0.0
        image = pipe_pag(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (
            1,
            64,
            64,
            3,
        ), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}"
        expected_slice = np.array(
            [0.45127502, 0.2797252, 0.15970308, 0.7993157, 0.5414344, 0.40160775, 0.7114598, 0.69803864, 0.4217583]
        )

        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        assert max_diff < 1e-3, f"output is different from expected, {image_slice.flatten()}"
247
248
249
250
251
252
253

    def test_encode_prompt_works_in_isolation(self):
        extra_required_param_value_dict = {
            "device": torch.device(torch_device).type,
            "do_classifier_free_guidance": self.get_dummy_inputs(device=torch_device).get("guidance_scale", 1.0) > 1.0,
        }
        return super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict)