test_i2vgenxl.py 9.18 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
from transformers import (
    CLIPImageProcessor,
    CLIPTextConfig,
    CLIPTextModel,
    CLIPTokenizer,
    CLIPVisionConfig,
    CLIPVisionModelWithProjection,
)

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    I2VGenXLPipeline,
)
from diffusers.models.unets import I2VGenXLUNet
from diffusers.utils import is_xformers_available, load_image
from diffusers.utils.testing_utils import (
39
    backend_empty_cache,
40
41
42
    enable_full_determinism,
    floats_tensor,
    numpy_cosine_similarity_distance,
43
    require_torch_accelerator,
44
45
46
47
48
    skip_mps,
    slow,
    torch_device,
)

49
from ..test_pipelines_common import PipelineTesterMixin, SDFunctionTesterMixin
50
51
52
53
54
55


enable_full_determinism()


@skip_mps
56
class I2VGenXLPipelineFastTests(SDFunctionTesterMixin, PipelineTesterMixin, unittest.TestCase):
57
58
59
60
61
62
    pipeline_class = I2VGenXLPipeline
    params = frozenset(["prompt", "negative_prompt", "image"])
    batch_params = frozenset(["prompt", "negative_prompt", "image", "generator"])
    # No `output_type`.
    required_optional_params = frozenset(["num_inference_steps", "generator", "latents", "return_dict"])

Marc Sun's avatar
Marc Sun committed
63
    supports_dduf = False
Aryan's avatar
Aryan committed
64
    test_layerwise_casting = True
Marc Sun's avatar
Marc Sun committed
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    def get_dummy_components(self):
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )

        torch.manual_seed(0)
        unet = I2VGenXLUNet(
            block_out_channels=(4, 8),
            layers_per_block=1,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("CrossAttnDownBlock3D", "DownBlock3D"),
            up_block_types=("UpBlock3D", "CrossAttnUpBlock3D"),
            cross_attention_dim=4,
86
87
            attention_head_dim=4,
            num_attention_heads=None,
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
            norm_num_groups=2,
        )

        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=(8,),
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D"],
            latent_channels=4,
            sample_size=32,
            norm_num_groups=2,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=4,
            intermediate_size=16,
            layer_norm_eps=1e-05,
            num_attention_heads=2,
            num_hidden_layers=2,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="gelu",
            projection_dim=32,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        torch.manual_seed(0)
        vision_encoder_config = CLIPVisionConfig(
            hidden_size=4,
            projection_dim=4,
            num_hidden_layers=2,
            num_attention_heads=2,
            image_size=32,
            intermediate_size=16,
            patch_size=1,
        )
        image_encoder = CLIPVisionModelWithProjection(vision_encoder_config)

        torch.manual_seed(0)
        feature_extractor = CLIPImageProcessor(crop_size=32, size=32)

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "image_encoder": image_encoder,
            "tokenizer": tokenizer,
            "feature_extractor": feature_extractor,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": input_image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "pt",
            "num_frames": 4,
            "width": 32,
            "height": 32,
        }
        return inputs

    def test_text_to_video_default_case(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["output_type"] = "np"
        frames = pipe(**inputs).frames

        image_slice = frames[0][0][-3:, -3:, -1]

        assert frames[0][0].shape == (32, 32, 3)
        expected_slice = np.array([0.5146, 0.6525, 0.6032, 0.5204, 0.5675, 0.4125, 0.3016, 0.5172, 0.4095])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_save_load_local(self):
        super().test_save_load_local(expected_max_difference=0.006)

    def test_sequential_cpu_offload_forward_pass(self):
        super().test_sequential_cpu_offload_forward_pass(expected_max_diff=0.008)

    def test_dict_tuple_outputs_equivalent(self):
        super().test_dict_tuple_outputs_equivalent(expected_max_difference=0.008)

    def test_save_load_optional_components(self):
        super().test_save_load_optional_components(expected_max_difference=0.008)

    @unittest.skip("Deprecated functionality")
    def test_attention_slicing_forward_pass(self):
        pass

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False, expected_max_diff=1e-2)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(batch_size=2, expected_max_diff=0.008)

    def test_model_cpu_offload_forward_pass(self):
        super().test_model_cpu_offload_forward_pass(expected_max_diff=0.008)

    def test_num_videos_per_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["output_type"] = "np"
        frames = pipe(**inputs, num_videos_per_prompt=2).frames

        assert frames.shape == (2, 4, 32, 32, 3)
        assert frames[0][0].shape == (32, 32, 3)

        image_slice = frames[0][0][-3:, -3:, -1]
        expected_slice = np.array([0.5146, 0.6525, 0.6032, 0.5204, 0.5675, 0.4125, 0.3016, 0.5172, 0.4095])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

231
232
233
234
    @unittest.skip("Test not supported for now.")
    def test_encode_prompt_works_in_isolation(self):
        pass

235
236

@slow
237
@require_torch_accelerator
238
class I2VGenXLPipelineSlowTests(unittest.TestCase):
239
240
241
242
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
243
        backend_empty_cache(torch_device)
244

245
246
247
248
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
249
        backend_empty_cache(torch_device)
250
251
252

    def test_i2vgen_xl(self):
        pipe = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
253
        pipe.enable_model_cpu_offload(device=torch_device)
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
        pipe.set_progress_bar_config(disable=None)
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png?download=true"
        )

        generator = torch.Generator("cpu").manual_seed(0)
        num_frames = 3

        output = pipe(
            image=image,
            prompt="my cat",
            num_frames=num_frames,
            generator=generator,
            num_inference_steps=3,
            output_type="np",
        )

        image = output.frames[0]
        assert image.shape == (num_frames, 704, 1280, 3)

        image_slice = image[0, -3:, -3:, -1]
        expected_slice = np.array([0.5482, 0.6244, 0.6274, 0.4584, 0.5935, 0.5937, 0.4579, 0.5767, 0.5892])
        assert numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice.flatten()) < 1e-3