test_controlnet_blip_diffusion.py 7.42 KB
Newer Older
Ayush Mangal's avatar
Ayush Mangal committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Ayush Mangal's avatar
Ayush Mangal committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest

import numpy as np
import torch
from PIL import Image
from transformers import CLIPTokenizer
from transformers.models.blip_2.configuration_blip_2 import Blip2Config
from transformers.models.clip.configuration_clip import CLIPTextConfig

from diffusers import (
    AutoencoderKL,
    BlipDiffusionControlNetPipeline,
    ControlNetModel,
    PNDMScheduler,
    UNet2DConditionModel,
)
31
from diffusers.utils.testing_utils import enable_full_determinism, torch_device
Ayush Mangal's avatar
Ayush Mangal committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from src.diffusers.pipelines.blip_diffusion.blip_image_processing import BlipImageProcessor
from src.diffusers.pipelines.blip_diffusion.modeling_blip2 import Blip2QFormerModel
from src.diffusers.pipelines.blip_diffusion.modeling_ctx_clip import ContextCLIPTextModel

from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class BlipDiffusionControlNetPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = BlipDiffusionControlNetPipeline
    params = [
        "prompt",
        "reference_image",
        "source_subject_category",
        "target_subject_category",
        "condtioning_image",
    ]
    batch_params = [
        "prompt",
        "reference_image",
        "source_subject_category",
        "target_subject_category",
        "condtioning_image",
    ]
    required_optional_params = [
        "generator",
        "height",
        "width",
        "latents",
        "guidance_scale",
        "num_inference_steps",
        "neg_prompt",
        "guidance_scale",
        "prompt_strength",
        "prompt_reps",
    ]

Marc Sun's avatar
Marc Sun committed
71
72
    supports_dduf = False

Ayush Mangal's avatar
Ayush Mangal committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    def get_dummy_components(self):
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            vocab_size=1000,
            hidden_size=16,
            intermediate_size=16,
            projection_dim=16,
            num_hidden_layers=1,
            num_attention_heads=1,
            max_position_embeddings=77,
        )
        text_encoder = ContextCLIPTextModel(text_encoder_config)

        vae = AutoencoderKL(
            in_channels=4,
            out_channels=4,
            down_block_types=("DownEncoderBlock2D",),
            up_block_types=("UpDecoderBlock2D",),
            block_out_channels=(32,),
            layers_per_block=1,
            act_fn="silu",
            latent_channels=4,
            norm_num_groups=16,
            sample_size=16,
        )

        blip_vision_config = {
            "hidden_size": 16,
            "intermediate_size": 16,
            "num_hidden_layers": 1,
            "num_attention_heads": 1,
            "image_size": 224,
            "patch_size": 14,
            "hidden_act": "quick_gelu",
        }

        blip_qformer_config = {
            "vocab_size": 1000,
            "hidden_size": 16,
            "num_hidden_layers": 1,
            "num_attention_heads": 1,
            "intermediate_size": 16,
            "max_position_embeddings": 512,
            "cross_attention_frequency": 1,
            "encoder_hidden_size": 16,
        }
        qformer_config = Blip2Config(
            vision_config=blip_vision_config,
            qformer_config=blip_qformer_config,
            num_query_tokens=16,
            tokenizer="hf-internal-testing/tiny-random-bert",
        )
        qformer = Blip2QFormerModel(qformer_config)

        unet = UNet2DConditionModel(
            block_out_channels=(4, 16),
            layers_per_block=1,
            norm_num_groups=4,
            sample_size=16,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=16,
        )
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        scheduler = PNDMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            set_alpha_to_one=False,
            skip_prk_steps=True,
        )
        controlnet = ControlNetModel(
            block_out_channels=(4, 16),
            layers_per_block=1,
            in_channels=4,
            norm_num_groups=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=16,
            conditioning_embedding_out_channels=(8, 16),
        )

        vae.eval()
        qformer.eval()
        text_encoder.eval()

        image_processor = BlipImageProcessor()

        components = {
            "text_encoder": text_encoder,
            "vae": vae,
            "qformer": qformer,
            "unet": unet,
            "tokenizer": tokenizer,
            "scheduler": scheduler,
            "controlnet": controlnet,
            "image_processor": image_processor,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        np.random.seed(seed)
        reference_image = np.random.rand(32, 32, 3) * 255
        reference_image = Image.fromarray(reference_image.astype("uint8")).convert("RGBA")
        cond_image = np.random.rand(32, 32, 3) * 255
        cond_image = Image.fromarray(cond_image.astype("uint8")).convert("RGBA")

        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "swimming underwater",
            "generator": generator,
            "reference_image": reference_image,
            "condtioning_image": cond_image,
            "source_subject_category": "dog",
            "target_subject_category": "dog",
            "height": 32,
            "width": 32,
            "guidance_scale": 7.5,
            "num_inference_steps": 2,
            "output_type": "np",
        }
        return inputs

201
202
203
204
205
206
    def test_dict_tuple_outputs_equivalent(self):
        expected_slice = None
        if torch_device == "cpu":
            expected_slice = np.array([0.4803, 0.3865, 0.1422, 0.6119, 0.2283, 0.6365, 0.5453, 0.5205, 0.3581])
        super().test_dict_tuple_outputs_equivalent(expected_slice=expected_slice)

Ayush Mangal's avatar
Ayush Mangal committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    def test_blipdiffusion_controlnet(self):
        device = "cpu"
        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        image = pipe(**self.get_dummy_inputs(device))[0]
        image_slice = image[0, -3:, -3:, 0]

        assert image.shape == (1, 16, 16, 4)
        expected_slice = np.array([0.7953, 0.7136, 0.6597, 0.4779, 0.7389, 0.4111, 0.5826, 0.4150, 0.8422])

        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
225
226
227
228

    @unittest.skip("Test not supported because of complexities in deriving query_embeds.")
    def test_encode_prompt_works_in_isolation(self):
        pass