pipeline_bddm.py 11.4 KB
Newer Older
patil-suraj's avatar
patil-suraj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#!/bin/env python
# -*- coding: utf-8 -*-
########################################################################
#
#  DiffWave: A Versatile Diffusion Model for Audio Synthesis
#  (https://arxiv.org/abs/2009.09761)
#  Modified from https://github.com/philsyn/DiffWave-Vocoder
#
#  Author: Max W. Y. Lam (maxwylam@tencent.com)
#  Copyright (c) 2021Tencent. All Rights Reserved
#
########################################################################


import math
anton-l's avatar
anton-l committed
16

patil-suraj's avatar
patil-suraj committed
17
18
19
20
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
anton-l's avatar
anton-l committed
21

patil-suraj's avatar
patil-suraj committed
22
23
import tqdm

24
from ..configuration_utils import ConfigMixin
anton-l's avatar
anton-l committed
25
from ..modeling_utils import ModelMixin
patil-suraj's avatar
patil-suraj committed
26
from ..pipeline_utils import DiffusionPipeline
patil-suraj's avatar
patil-suraj committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50


def calc_diffusion_step_embedding(diffusion_steps, diffusion_step_embed_dim_in):
    """
    Embed a diffusion step $t$ into a higher dimensional space
        E.g. the embedding vector in the 128-dimensional space is
        [sin(t * 10^(0*4/63)), ... , sin(t * 10^(63*4/63)),
         cos(t * 10^(0*4/63)), ... , cos(t * 10^(63*4/63))]

    Parameters:
        diffusion_steps (torch.long tensor, shape=(batchsize, 1)):
                                    diffusion steps for batch data
        diffusion_step_embed_dim_in (int, default=128):
                                    dimensionality of the embedding space for discrete diffusion steps
    Returns:
        the embedding vectors (torch.tensor, shape=(batchsize, diffusion_step_embed_dim_in)):
    """

    assert diffusion_step_embed_dim_in % 2 == 0

    half_dim = diffusion_step_embed_dim_in // 2
    _embed = np.log(10000) / (half_dim - 1)
    _embed = torch.exp(torch.arange(half_dim) * -_embed).cuda()
    _embed = diffusion_steps * _embed
anton-l's avatar
anton-l committed
51
    diffusion_step_embed = torch.cat((torch.sin(_embed), torch.cos(_embed)), 1)
patil-suraj's avatar
patil-suraj committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    return diffusion_step_embed


"""
Below scripts were borrowed from
https://github.com/philsyn/DiffWave-Vocoder/blob/master/WaveNet.py
"""


def swish(x):
    return x * torch.sigmoid(x)


# dilated conv layer with kaiming_normal initialization
# from https://github.com/ksw0306/FloWaveNet/blob/master/modules.py
class Conv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1):
        super().__init__()
        self.padding = dilation * (kernel_size - 1) // 2
anton-l's avatar
anton-l committed
71
        self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, dilation=dilation, padding=self.padding)
patil-suraj's avatar
patil-suraj committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        self.conv = nn.utils.weight_norm(self.conv)
        nn.init.kaiming_normal_(self.conv.weight)

    def forward(self, x):
        out = self.conv(x)
        return out


# conv1x1 layer with zero initialization
# from https://github.com/ksw0306/FloWaveNet/blob/master/modules.py but the scale parameter is removed
class ZeroConv1d(nn.Module):
    def __init__(self, in_channel, out_channel):
        super().__init__()
        self.conv = nn.Conv1d(in_channel, out_channel, kernel_size=1, padding=0)
        self.conv.weight.data.zero_()
        self.conv.bias.data.zero_()

    def forward(self, x):
        out = self.conv(x)
        return out


# every residual block (named residual layer in paper)
# contains one noncausal dilated conv
class ResidualBlock(nn.Module):
anton-l's avatar
anton-l committed
97
    def __init__(self, res_channels, skip_channels, dilation, diffusion_step_embed_dim_out):
patil-suraj's avatar
patil-suraj committed
98
99
100
101
102
103
104
        super().__init__()
        self.res_channels = res_channels

        # Use a FC layer for diffusion step embedding
        self.fc_t = nn.Linear(diffusion_step_embed_dim_out, self.res_channels)

        # Dilated conv layer
anton-l's avatar
anton-l committed
105
        self.dilated_conv_layer = Conv(self.res_channels, 2 * self.res_channels, kernel_size=3, dilation=dilation)
patil-suraj's avatar
patil-suraj committed
106
107
108
109

        # Add mel spectrogram upsampler and conditioner conv1x1 layer
        self.upsample_conv2d = nn.ModuleList()
        for s in [16, 16]:
anton-l's avatar
anton-l committed
110
            conv_trans2d = nn.ConvTranspose2d(1, 1, (3, 2 * s), padding=(1, s // 2), stride=(1, s))
patil-suraj's avatar
patil-suraj committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
            conv_trans2d = nn.utils.weight_norm(conv_trans2d)
            nn.init.kaiming_normal_(conv_trans2d.weight)
            self.upsample_conv2d.append(conv_trans2d)

        # 80 is mel bands
        self.mel_conv = Conv(80, 2 * self.res_channels, kernel_size=1)

        # Residual conv1x1 layer, connect to next residual layer
        self.res_conv = nn.Conv1d(res_channels, res_channels, kernel_size=1)
        self.res_conv = nn.utils.weight_norm(self.res_conv)
        nn.init.kaiming_normal_(self.res_conv.weight)

        # Skip conv1x1 layer, add to all skip outputs through skip connections
        self.skip_conv = nn.Conv1d(res_channels, skip_channels, kernel_size=1)
        self.skip_conv = nn.utils.weight_norm(self.skip_conv)
        nn.init.kaiming_normal_(self.skip_conv.weight)

    def forward(self, input_data):
        x, mel_spec, diffusion_step_embed = input_data
        h = x
        batch_size, n_channels, seq_len = x.shape
        assert n_channels == self.res_channels

        # Add in diffusion step embedding
        part_t = self.fc_t(diffusion_step_embed)
        part_t = part_t.view([batch_size, self.res_channels, 1])
        h += part_t

        # Dilated conv layer
        h = self.dilated_conv_layer(h)

        # Upsample spectrogram to size of audio
        mel_spec = torch.unsqueeze(mel_spec, dim=1)
        mel_spec = F.leaky_relu(self.upsample_conv2d[0](mel_spec), 0.4, inplace=False)
        mel_spec = F.leaky_relu(self.upsample_conv2d[1](mel_spec), 0.4, inplace=False)
        mel_spec = torch.squeeze(mel_spec, dim=1)

        assert mel_spec.size(2) >= seq_len
        if mel_spec.size(2) > seq_len:
            mel_spec = mel_spec[:, :, :seq_len]

        mel_spec = self.mel_conv(mel_spec)
        h += mel_spec

        # Gated-tanh nonlinearity
anton-l's avatar
anton-l committed
156
        out = torch.tanh(h[:, : self.res_channels, :]) * torch.sigmoid(h[:, self.res_channels :, :])
patil-suraj's avatar
patil-suraj committed
157
158
159
160
161
162
163
164
165
166
167

        # Residual and skip outputs
        res = self.res_conv(out)
        assert x.shape == res.shape
        skip = self.skip_conv(out)

        # Normalize for training stability
        return (x + res) * math.sqrt(0.5), skip


class ResidualGroup(nn.Module):
anton-l's avatar
anton-l committed
168
169
170
171
172
173
174
175
176
177
    def __init__(
        self,
        res_channels,
        skip_channels,
        num_res_layers,
        dilation_cycle,
        diffusion_step_embed_dim_in,
        diffusion_step_embed_dim_mid,
        diffusion_step_embed_dim_out,
    ):
patil-suraj's avatar
patil-suraj committed
178
179
180
181
182
183
184
185
186
187
188
189
        super().__init__()
        self.num_res_layers = num_res_layers
        self.diffusion_step_embed_dim_in = diffusion_step_embed_dim_in

        # Use the shared two FC layers for diffusion step embedding
        self.fc_t1 = nn.Linear(diffusion_step_embed_dim_in, diffusion_step_embed_dim_mid)
        self.fc_t2 = nn.Linear(diffusion_step_embed_dim_mid, diffusion_step_embed_dim_out)

        # Stack all residual blocks with dilations 1, 2, ... , 512, ... , 1, 2, ..., 512
        self.residual_blocks = nn.ModuleList()
        for n in range(self.num_res_layers):
            self.residual_blocks.append(
anton-l's avatar
anton-l committed
190
191
192
193
194
195
196
                ResidualBlock(
                    res_channels,
                    skip_channels,
                    dilation=2 ** (n % dilation_cycle),
                    diffusion_step_embed_dim_out=diffusion_step_embed_dim_out,
                )
            )
patil-suraj's avatar
patil-suraj committed
197
198
199
200
201

    def forward(self, input_data):
        x, mel_spectrogram, diffusion_steps = input_data

        # Embed diffusion step t
anton-l's avatar
anton-l committed
202
        diffusion_step_embed = calc_diffusion_step_embedding(diffusion_steps, self.diffusion_step_embed_dim_in)
patil-suraj's avatar
patil-suraj committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        diffusion_step_embed = swish(self.fc_t1(diffusion_step_embed))
        diffusion_step_embed = swish(self.fc_t2(diffusion_step_embed))

        # Pass all residual layers
        h = x
        skip = 0
        for n in range(self.num_res_layers):
            # Use the output from last residual layer
            h, skip_n = self.residual_blocks[n]((h, mel_spectrogram, diffusion_step_embed))
            # Accumulate all skip outputs
            skip += skip_n

        # Normalize for training stability
        return skip * math.sqrt(1.0 / self.num_res_layers)


219
220
221
222
223
224
225
226
227
228
229
230
231
class DiffWave(ModelMixin, ConfigMixin):
    def __init__(
        self,
        in_channels=1,
        res_channels=128,
        skip_channels=128,
        out_channels=1,
        num_res_layers=30,
        dilation_cycle=10,
        diffusion_step_embed_dim_in=128,
        diffusion_step_embed_dim_mid=512,
        diffusion_step_embed_dim_out=512,
    ):
patil-suraj's avatar
patil-suraj committed
232
233
        super().__init__()

234
        # register all init arguments with self.register
235
        self.register_to_config(
236
237
238
239
240
241
242
243
244
245
246
            in_channels=in_channels,
            res_channels=res_channels,
            skip_channels=skip_channels,
            out_channels=out_channels,
            num_res_layers=num_res_layers,
            dilation_cycle=dilation_cycle,
            diffusion_step_embed_dim_in=diffusion_step_embed_dim_in,
            diffusion_step_embed_dim_mid=diffusion_step_embed_dim_mid,
            diffusion_step_embed_dim_out=diffusion_step_embed_dim_out,
        )

patil-suraj's avatar
patil-suraj committed
247
248
249
        # Initial conv1x1 with relu
        self.init_conv = nn.Sequential(Conv(in_channels, res_channels, kernel_size=1), nn.ReLU(inplace=False))
        # All residual layers
anton-l's avatar
anton-l committed
250
251
252
253
254
255
256
257
258
        self.residual_layer = ResidualGroup(
            res_channels,
            skip_channels,
            num_res_layers,
            dilation_cycle,
            diffusion_step_embed_dim_in,
            diffusion_step_embed_dim_mid,
            diffusion_step_embed_dim_out,
        )
patil-suraj's avatar
patil-suraj committed
259
        # Final conv1x1 -> relu -> zeroconv1x1
anton-l's avatar
anton-l committed
260
261
262
263
264
        self.final_conv = nn.Sequential(
            Conv(skip_channels, skip_channels, kernel_size=1),
            nn.ReLU(inplace=False),
            ZeroConv1d(skip_channels, out_channels),
        )
patil-suraj's avatar
patil-suraj committed
265
266
267
268
269
270
271

    def forward(self, input_data):
        audio, mel_spectrogram, diffusion_steps = input_data
        x = audio
        x = self.init_conv(x).clone()
        x = self.residual_layer((x, mel_spectrogram, diffusion_steps))
        return self.final_conv(x)
patil-suraj's avatar
patil-suraj committed
272
273


patil-suraj's avatar
patil-suraj committed
274
class BDDM(DiffusionPipeline):
patil-suraj's avatar
patil-suraj committed
275
276
277
278
    def __init__(self, diffwave, noise_scheduler):
        super().__init__()
        noise_scheduler = noise_scheduler.set_format("pt")
        self.register_modules(diffwave=diffwave, noise_scheduler=noise_scheduler)
anton-l's avatar
anton-l committed
279

patil-suraj's avatar
patil-suraj committed
280
    @torch.no_grad()
patil-suraj's avatar
patil-suraj committed
281
    def __call__(self, mel_spectrogram, generator, torch_device=None):
patil-suraj's avatar
patil-suraj committed
282
283
        if torch_device is None:
            torch_device = "cuda" if torch.cuda.is_available() else "cpu"
anton-l's avatar
anton-l committed
284

patil-suraj's avatar
patil-suraj committed
285
        self.diffwave.to(torch_device)
286

patil-suraj's avatar
patil-suraj committed
287
288
        mel_spectrogram = mel_spectrogram.to(torch_device)
        audio_length = mel_spectrogram.size(-1) * 256
patil-suraj's avatar
patil-suraj committed
289
290
291
292
293
        audio_size = (1, 1, audio_length)

        # Sample gaussian noise to begin loop
        audio = torch.normal(0, 1, size=audio_size, generator=generator).to(torch_device)

294
        timestep_values = self.noise_scheduler.config.timestep_values
patil-suraj's avatar
patil-suraj committed
295
296
297
        num_prediction_steps = len(self.noise_scheduler)
        for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
            # 1. predict noise residual
patil-suraj's avatar
patil-suraj committed
298
299
            ts = (torch.tensor(timestep_values[t]) * torch.ones((1, 1))).to(torch_device)
            residual = self.diffwave((audio, mel_spectrogram, ts))
patil-suraj's avatar
patil-suraj committed
300
301
302
303
304
305
306
307
308
309
310
311
312

            # 2. predict previous mean of audio x_t-1
            pred_prev_audio = self.noise_scheduler.step(residual, audio, t)

            # 3. optionally sample variance
            variance = 0
            if t > 0:
                noise = torch.normal(0, 1, size=audio_size, generator=generator).to(torch_device)
                variance = self.noise_scheduler.get_variance(t).sqrt() * noise

            # 4. set current audio to prev_audio: x_t -> x_t-1
            audio = pred_prev_audio + variance

anton-l's avatar
anton-l committed
313
        return audio