You need to sign in or sign up before continuing.
unet_grad_tts.py 7.46 KB
Newer Older
patil-suraj's avatar
patil-suraj committed
1
2
3
4
import torch

from ..configuration_utils import ConfigMixin
from ..modeling_utils import ModelMixin
5
from .embeddings import get_timestep_embedding
patil-suraj's avatar
patil-suraj committed
6

7

patil-suraj's avatar
patil-suraj committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class Mish(torch.nn.Module):
    def forward(self, x):
        return x * torch.tanh(torch.nn.functional.softplus(x))


class Upsample(torch.nn.Module):
    def __init__(self, dim):
        super(Upsample, self).__init__()
        self.conv = torch.nn.ConvTranspose2d(dim, dim, 4, 2, 1)

    def forward(self, x):
        return self.conv(x)


class Downsample(torch.nn.Module):
    def __init__(self, dim):
        super(Downsample, self).__init__()
        self.conv = torch.nn.Conv2d(dim, dim, 3, 2, 1)

    def forward(self, x):
        return self.conv(x)


class Rezero(torch.nn.Module):
    def __init__(self, fn):
        super(Rezero, self).__init__()
        self.fn = fn
        self.g = torch.nn.Parameter(torch.zeros(1))

    def forward(self, x):
        return self.fn(x) * self.g


class Block(torch.nn.Module):
    def __init__(self, dim, dim_out, groups=8):
        super(Block, self).__init__()
44
45
46
        self.block = torch.nn.Sequential(
            torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish()
        )
patil-suraj's avatar
patil-suraj committed
47
48
49
50
51
52
53
54
55

    def forward(self, x, mask):
        output = self.block(x * mask)
        return output * mask


class ResnetBlock(torch.nn.Module):
    def __init__(self, dim, dim_out, time_emb_dim, groups=8):
        super(ResnetBlock, self).__init__()
56
        self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out))
patil-suraj's avatar
patil-suraj committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

        self.block1 = Block(dim, dim_out, groups=groups)
        self.block2 = Block(dim_out, dim_out, groups=groups)
        if dim != dim_out:
            self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
        else:
            self.res_conv = torch.nn.Identity()

    def forward(self, x, mask, time_emb):
        h = self.block1(x, mask)
        h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1)
        h = self.block2(h, mask)
        output = h + self.res_conv(x * mask)
        return output


class LinearAttention(torch.nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super(LinearAttention, self).__init__()
        self.heads = heads
Patrick von Platen's avatar
Patrick von Platen committed
77
        self.dim_head = dim_head
patil-suraj's avatar
patil-suraj committed
78
79
        hidden_dim = dim_head * heads
        self.to_qkv = torch.nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
80
        self.to_out = torch.nn.Conv2d(hidden_dim, dim, 1)
patil-suraj's avatar
patil-suraj committed
81
82
83
84

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x)
Patrick von Platen's avatar
Patrick von Platen committed
85
86
87
88
89
90
        #        q, k, v = rearrange(qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3)
        q, k, v = (
            qkv.reshape(b, 3, self.heads, self.dim_head, h, w)
            .permute(1, 0, 2, 3, 4, 5)
            .reshape(3, b, self.heads, self.dim_head, -1)
        )
patil-suraj's avatar
patil-suraj committed
91
        k = k.softmax(dim=-1)
92
93
        context = torch.einsum("bhdn,bhen->bhde", k, v)
        out = torch.einsum("bhde,bhdn->bhen", context, q)
Patrick von Platen's avatar
Patrick von Platen committed
94
95
        #        out = rearrange(out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w)
        out = out.reshape(b, self.heads, self.dim_head, h, w).reshape(b, self.heads * self.dim_head, h, w)
patil-suraj's avatar
patil-suraj committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
        return self.to_out(out)


class Residual(torch.nn.Module):
    def __init__(self, fn):
        super(Residual, self).__init__()
        self.fn = fn

    def forward(self, x, *args, **kwargs):
        output = self.fn(x, *args, **kwargs) + x
        return output


class UNetGradTTSModel(ModelMixin, ConfigMixin):
110
    def __init__(self, dim, dim_mults=(1, 2, 4), groups=8, n_spks=None, spk_emb_dim=64, n_feats=80, pe_scale=1000):
patil-suraj's avatar
patil-suraj committed
111
112
        super(UNetGradTTSModel, self).__init__()

113
        self.register_to_config(
patil-suraj's avatar
patil-suraj committed
114
115
116
117
118
119
            dim=dim,
            dim_mults=dim_mults,
            groups=groups,
            n_spks=n_spks,
            spk_emb_dim=spk_emb_dim,
            n_feats=n_feats,
120
            pe_scale=pe_scale,
patil-suraj's avatar
patil-suraj committed
121
        )
122

patil-suraj's avatar
patil-suraj committed
123
124
125
126
127
128
        self.dim = dim
        self.dim_mults = dim_mults
        self.groups = groups
        self.n_spks = n_spks if not isinstance(n_spks, type(None)) else 1
        self.spk_emb_dim = spk_emb_dim
        self.pe_scale = pe_scale
129

patil-suraj's avatar
patil-suraj committed
130
        if n_spks > 1:
patil-suraj's avatar
patil-suraj committed
131
            self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
patil-suraj's avatar
style  
patil-suraj committed
132
133
134
            self.spk_mlp = torch.nn.Sequential(
                torch.nn.Linear(spk_emb_dim, spk_emb_dim * 4), Mish(), torch.nn.Linear(spk_emb_dim * 4, n_feats)
            )
135

136
        self.mlp = torch.nn.Sequential(torch.nn.Linear(dim, dim * 4), Mish(), torch.nn.Linear(dim * 4, dim))
patil-suraj's avatar
patil-suraj committed
137
138
139
140
141
142
143
144
145

        dims = [2 + (1 if n_spks > 1 else 0), *map(lambda m: dim * m, dim_mults)]
        in_out = list(zip(dims[:-1], dims[1:]))
        self.downs = torch.nn.ModuleList([])
        self.ups = torch.nn.ModuleList([])
        num_resolutions = len(in_out)

        for ind, (dim_in, dim_out) in enumerate(in_out):
            is_last = ind >= (num_resolutions - 1)
146
147
148
149
150
151
152
153
154
155
            self.downs.append(
                torch.nn.ModuleList(
                    [
                        ResnetBlock(dim_in, dim_out, time_emb_dim=dim),
                        ResnetBlock(dim_out, dim_out, time_emb_dim=dim),
                        Residual(Rezero(LinearAttention(dim_out))),
                        Downsample(dim_out) if not is_last else torch.nn.Identity(),
                    ]
                )
            )
patil-suraj's avatar
patil-suraj committed
156
157
158
159
160
161
162

        mid_dim = dims[-1]
        self.mid_block1 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)
        self.mid_attn = Residual(Rezero(LinearAttention(mid_dim)))
        self.mid_block2 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)

        for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
163
164
165
166
167
168
169
170
171
172
            self.ups.append(
                torch.nn.ModuleList(
                    [
                        ResnetBlock(dim_out * 2, dim_in, time_emb_dim=dim),
                        ResnetBlock(dim_in, dim_in, time_emb_dim=dim),
                        Residual(Rezero(LinearAttention(dim_in))),
                        Upsample(dim_in),
                    ]
                )
            )
patil-suraj's avatar
patil-suraj committed
173
174
175
        self.final_block = Block(dim, dim)
        self.final_conv = torch.nn.Conv2d(dim, 1, 1)

patil-suraj's avatar
patil-suraj committed
176
    def forward(self, x, timesteps, mu, mask, spk=None):
patil-suraj's avatar
patil-suraj committed
177
178
179
180
        if self.n_spks > 1:
            # Get speaker embedding
            spk = self.spk_emb(spk)

patil-suraj's avatar
patil-suraj committed
181
182
        if not isinstance(spk, type(None)):
            s = self.spk_mlp(spk)
183

184
        t = get_timestep_embedding(timesteps, self.dim, scale=self.pe_scale)
patil-suraj's avatar
patil-suraj committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        t = self.mlp(t)

        if self.n_spks < 2:
            x = torch.stack([mu, x], 1)
        else:
            s = s.unsqueeze(-1).repeat(1, 1, x.shape[-1])
            x = torch.stack([mu, x, s], 1)
        mask = mask.unsqueeze(1)

        hiddens = []
        masks = [mask]
        for resnet1, resnet2, attn, downsample in self.downs:
            mask_down = masks[-1]
            x = resnet1(x, mask_down, t)
            x = resnet2(x, mask_down, t)
            x = attn(x)
            hiddens.append(x)
            x = downsample(x * mask_down)
            masks.append(mask_down[:, :, :, ::2])

        masks = masks[:-1]
        mask_mid = masks[-1]
        x = self.mid_block1(x, mask_mid, t)
        x = self.mid_attn(x)
        x = self.mid_block2(x, mask_mid, t)

        for resnet1, resnet2, attn, upsample in self.ups:
            mask_up = masks.pop()
            x = torch.cat((x, hiddens.pop()), dim=1)
            x = resnet1(x, mask_up, t)
            x = resnet2(x, mask_up, t)
            x = attn(x)
            x = upsample(x * mask_up)

        x = self.final_block(x, mask)
        output = self.final_conv(x * mask)

222
        return (output * mask).squeeze(1)