run_diffuser_locomotion.py 1.49 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import d4rl  # noqa
import gym
import tqdm
from diffusers.experimental import ValueGuidedRLPipeline


config = dict(
    n_samples=64,
    horizon=32,
    num_inference_steps=20,
11
    n_guide_steps=2,  # can set to 0 for faster sampling, does not use value network
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    scale_grad_by_std=True,
    scale=0.1,
    eta=0.0,
    t_grad_cutoff=2,
    device="cpu",
)


if __name__ == "__main__":
    env_name = "hopper-medium-v2"
    env = gym.make(env_name)

    pipeline = ValueGuidedRLPipeline.from_pretrained(
        "bglick13/hopper-medium-v2-value-function-hor32",
        env=env,
    )

    env.seed(0)
    obs = env.reset()
    total_reward = 0
    total_score = 0
    T = 1000
    rollout = [obs.copy()]
    try:
        for t in tqdm.tqdm(range(T)):
            # call the policy
            denorm_actions = pipeline(obs, planning_horizon=32)

            # execute action in environment
            next_observation, reward, terminal, _ = env.step(denorm_actions)
            score = env.get_normalized_score(total_reward)
43

44
45
46
47
48
49
50
            # update return
            total_reward += reward
            total_score += score
            print(
                f"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:"
                f" {total_score}"
            )
51

52
53
54
55
56
57
58
59
            # save observations for rendering
            rollout.append(next_observation.copy())

            obs = next_observation
    except KeyboardInterrupt:
        pass

    print(f"Total reward: {total_reward}")