convert_stable_diffusion_checkpoint_to_onnx.py 9.62 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
16
17
import os
import shutil
18
19
20
21
22
from pathlib import Path

import torch
from torch.onnx import export

23
import onnx
24
from diffusers import OnnxStableDiffusionPipeline, StableDiffusionPipeline
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from diffusers.onnx_utils import OnnxRuntimeModel
from packaging import version


is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")


def onnx_export(
    model,
    model_args: tuple,
    output_path: Path,
    ordered_input_names,
    output_names,
    dynamic_axes,
    opset,
    use_external_data_format=False,
):
    output_path.parent.mkdir(parents=True, exist_ok=True)
    # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
    # so we check the torch version for backwards compatibility
    if is_torch_less_than_1_11:
        export(
            model,
            model_args,
            f=output_path.as_posix(),
            input_names=ordered_input_names,
            output_names=output_names,
            dynamic_axes=dynamic_axes,
            do_constant_folding=True,
            use_external_data_format=use_external_data_format,
            enable_onnx_checker=True,
            opset_version=opset,
        )
    else:
        export(
            model,
            model_args,
            f=output_path.as_posix(),
            input_names=ordered_input_names,
            output_names=output_names,
            dynamic_axes=dynamic_axes,
            do_constant_folding=True,
            opset_version=opset,
        )


@torch.no_grad()
72
73
74
75
76
77
78
79
80
def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = False):
    dtype = torch.float16 if fp16 else torch.float32
    if fp16 and torch.cuda.is_available():
        device = "cuda"
    elif fp16 and not torch.cuda.is_available():
        raise ValueError("`float16` model export is only supported on GPUs with CUDA")
    else:
        device = "cpu"
    pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=dtype).to(device)
81
82
83
    output_path = Path(output_path)

    # TEXT ENCODER
84
85
    num_tokens = pipeline.text_encoder.config.max_position_embeddings
    text_hidden_size = pipeline.text_encoder.config.hidden_size
86
87
88
89
90
91
92
93
94
95
    text_input = pipeline.tokenizer(
        "A sample prompt",
        padding="max_length",
        max_length=pipeline.tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    onnx_export(
        pipeline.text_encoder,
        # casting to torch.int32 until the CLIP fix is released: https://github.com/huggingface/transformers/pull/18515/files
96
        model_args=(text_input.input_ids.to(device=device, dtype=torch.int32)),
97
98
99
100
101
102
103
104
        output_path=output_path / "text_encoder" / "model.onnx",
        ordered_input_names=["input_ids"],
        output_names=["last_hidden_state", "pooler_output"],
        dynamic_axes={
            "input_ids": {0: "batch", 1: "sequence"},
        },
        opset=opset,
    )
105
    del pipeline.text_encoder
106
107

    # UNET
108
109
    unet_in_channels = pipeline.unet.config.in_channels
    unet_sample_size = pipeline.unet.config.sample_size
110
    unet_path = output_path / "unet" / "model.onnx"
111
112
    onnx_export(
        pipeline.unet,
113
        model_args=(
114
115
116
            torch.randn(2, unet_in_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
            torch.randn(2).to(device=device, dtype=dtype),
            torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype),
117
118
            False,
        ),
119
        output_path=unet_path,
120
121
122
123
124
125
126
127
128
129
        ordered_input_names=["sample", "timestep", "encoder_hidden_states", "return_dict"],
        output_names=["out_sample"],  # has to be different from "sample" for correct tracing
        dynamic_axes={
            "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
            "timestep": {0: "batch"},
            "encoder_hidden_states": {0: "batch", 1: "sequence"},
        },
        opset=opset,
        use_external_data_format=True,  # UNet is > 2GB, so the weights need to be split
    )
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    unet_model_path = str(unet_path.absolute().as_posix())
    unet_dir = os.path.dirname(unet_model_path)
    unet = onnx.load(unet_model_path)
    # clean up existing tensor files
    shutil.rmtree(unet_dir)
    os.mkdir(unet_dir)
    # collate external tensor files into one
    onnx.save_model(
        unet,
        unet_model_path,
        save_as_external_data=True,
        all_tensors_to_one_file=True,
        location="weights.pb",
        convert_attribute=False,
    )
145
    del pipeline.unet
146
147
148

    # VAE ENCODER
    vae_encoder = pipeline.vae
149
150
    vae_in_channels = vae_encoder.config.in_channels
    vae_sample_size = vae_encoder.config.sample_size
151
152
153
154
    # need to get the raw tensor output (sample) from the encoder
    vae_encoder.forward = lambda sample, return_dict: vae_encoder.encode(sample, return_dict)[0].sample()
    onnx_export(
        vae_encoder,
155
156
157
158
        model_args=(
            torch.randn(1, vae_in_channels, vae_sample_size, vae_sample_size).to(device=device, dtype=dtype),
            False,
        ),
159
160
161
162
163
164
165
166
167
168
169
        output_path=output_path / "vae_encoder" / "model.onnx",
        ordered_input_names=["sample", "return_dict"],
        output_names=["latent_sample"],
        dynamic_axes={
            "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
        },
        opset=opset,
    )

    # VAE DECODER
    vae_decoder = pipeline.vae
170
171
    vae_latent_channels = vae_decoder.config.latent_channels
    vae_out_channels = vae_decoder.config.out_channels
172
173
174
175
    # forward only through the decoder part
    vae_decoder.forward = vae_encoder.decode
    onnx_export(
        vae_decoder,
176
177
178
179
        model_args=(
            torch.randn(1, vae_latent_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
            False,
        ),
180
181
182
183
184
185
186
187
        output_path=output_path / "vae_decoder" / "model.onnx",
        ordered_input_names=["latent_sample", "return_dict"],
        output_names=["sample"],
        dynamic_axes={
            "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
        },
        opset=opset,
    )
188
    del pipeline.vae
189
190

    # SAFETY CHECKER
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    if pipeline.safety_checker is not None:
        safety_checker = pipeline.safety_checker
        clip_num_channels = safety_checker.config.vision_config.num_channels
        clip_image_size = safety_checker.config.vision_config.image_size
        safety_checker.forward = safety_checker.forward_onnx
        onnx_export(
            pipeline.safety_checker,
            model_args=(
                torch.randn(
                    1,
                    clip_num_channels,
                    clip_image_size,
                    clip_image_size,
                ).to(device=device, dtype=dtype),
                torch.randn(1, vae_sample_size, vae_sample_size, vae_out_channels).to(device=device, dtype=dtype),
            ),
            output_path=output_path / "safety_checker" / "model.onnx",
            ordered_input_names=["clip_input", "images"],
            output_names=["out_images", "has_nsfw_concepts"],
            dynamic_axes={
                "clip_input": {0: "batch", 1: "channels", 2: "height", 3: "width"},
                "images": {0: "batch", 1: "height", 2: "width", 3: "channels"},
            },
            opset=opset,
        )
        del pipeline.safety_checker
        safety_checker = OnnxRuntimeModel.from_pretrained(output_path / "safety_checker")
218
        feature_extractor = pipeline.feature_extractor
219
220
    else:
        safety_checker = None
221
        feature_extractor = None
222

223
    onnx_pipeline = OnnxStableDiffusionPipeline(
224
        vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder"),
225
226
227
228
229
        vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder"),
        text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder"),
        tokenizer=pipeline.tokenizer,
        unet=OnnxRuntimeModel.from_pretrained(output_path / "unet"),
        scheduler=pipeline.scheduler,
230
        safety_checker=safety_checker,
231
232
        feature_extractor=feature_extractor,
        requires_safety_checker=safety_checker is not None,
233
234
235
236
237
    )

    onnx_pipeline.save_pretrained(output_path)
    print("ONNX pipeline saved to", output_path)

238
239
    del pipeline
    del onnx_pipeline
240
    _ = OnnxStableDiffusionPipeline.from_pretrained(output_path, provider="CPUExecutionProvider")
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    print("ONNX pipeline is loadable")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--model_path",
        type=str,
        required=True,
        help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
    )

    parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")

    parser.add_argument(
        "--opset",
        default=14,
259
        type=int,
260
261
        help="The version of the ONNX operator set to use.",
    )
262
    parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
263
264
265

    args = parser.parse_args()

266
    convert_models(args.model_path, args.output_path, args.opset, args.fp16)