models.mdx 2.32 KB
Newer Older
Nathan Lambert's avatar
Nathan Lambert committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Models

Diffusers contains pretrained models for popular algorithms and modules for creating the next set of diffusion models.
The primary function of these models is to denoise an input sample, by modeling the distribution $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$.
The models are built on the base class ['ModelMixin'] that is a `torch.nn.module` with basic functionality for saving and loading models both locally and from the HuggingFace hub.

Kashif Rasul's avatar
Kashif Rasul committed
19
20
## ModelMixin
[[autodoc]] ModelMixin
Nathan Lambert's avatar
Nathan Lambert committed
21

Kashif Rasul's avatar
Kashif Rasul committed
22
23
## UNet2DOutput
[[autodoc]] models.unet_2d.UNet2DOutput
Nathan Lambert's avatar
Nathan Lambert committed
24

Kashif Rasul's avatar
Kashif Rasul committed
25
26
## UNet2DModel
[[autodoc]] UNet2DModel
Nathan Lambert's avatar
Nathan Lambert committed
27

28
29
30
31
32
33
## UNet1DOutput
[[autodoc]] models.unet_1d.UNet1DOutput

## UNet1DModel
[[autodoc]] UNet1DModel

Kashif Rasul's avatar
Kashif Rasul committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
## UNet2DConditionOutput
[[autodoc]] models.unet_2d_condition.UNet2DConditionOutput

## UNet2DConditionModel
[[autodoc]] UNet2DConditionModel

## DecoderOutput
[[autodoc]] models.vae.DecoderOutput

## VQEncoderOutput
[[autodoc]] models.vae.VQEncoderOutput

## VQModel
[[autodoc]] VQModel

## AutoencoderKLOutput
[[autodoc]] models.vae.AutoencoderKLOutput

## AutoencoderKL
[[autodoc]] AutoencoderKL
54

Will Berman's avatar
Will Berman committed
55
56
57
58
59
60
## Transformer2DModel
[[autodoc]] Transformer2DModel

## Transformer2DModelOutput
[[autodoc]] models.attention.Transformer2DModelOutput

Will Berman's avatar
Will Berman committed
61
62
63
64
65
66
## PriorTransformer
[[autodoc]] models.prior_transformer.PriorTransformer

## PriorTransformerOutput
[[autodoc]] models.prior_transformer.PriorTransformerOutput

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
## FlaxModelMixin
[[autodoc]] FlaxModelMixin

## FlaxUNet2DConditionOutput
[[autodoc]] models.unet_2d_condition_flax.FlaxUNet2DConditionOutput

## FlaxUNet2DConditionModel
[[autodoc]] FlaxUNet2DConditionModel

## FlaxDecoderOutput
[[autodoc]] models.vae_flax.FlaxDecoderOutput

## FlaxAutoencoderKLOutput
[[autodoc]] models.vae_flax.FlaxAutoencoderKLOutput

## FlaxAutoencoderKL
[[autodoc]] FlaxAutoencoderKL