scheduling_pndm_flax.py 18.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
16
17

import math
18
19
20
21
22
23
24
25
26
27
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import flax
import jax.numpy as jnp

from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin, SchedulerOutput


28
def betas_for_alpha_bar(num_diffusion_timesteps: int, max_beta=0.999) -> jnp.ndarray:
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.

    Returns:
43
        betas (`jnp.ndarray`): the betas used by the scheduler to step the model outputs
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    """

    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return jnp.array(betas, dtype=jnp.float32)


@flax.struct.dataclass
class PNDMSchedulerState:
    # setable values
60
    _timesteps: jnp.ndarray
61
    num_inference_steps: Optional[int] = None
62
63
64
    prk_timesteps: Optional[jnp.ndarray] = None
    plms_timesteps: Optional[jnp.ndarray] = None
    timesteps: Optional[jnp.ndarray] = None
65
66
67
68
69

    # running values
    cur_model_output: Optional[jnp.ndarray] = None
    counter: int = 0
    cur_sample: Optional[jnp.ndarray] = None
70
    ets: jnp.ndarray = jnp.array([])
71
72

    @classmethod
73
74
    def create(cls, num_train_timesteps: int):
        return cls(_timesteps=jnp.arange(0, num_train_timesteps)[::-1])
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100


@dataclass
class FlaxSchedulerOutput(SchedulerOutput):
    state: PNDMSchedulerState


class FlaxPNDMScheduler(SchedulerMixin, ConfigMixin):
    """
    Pseudo numerical methods for diffusion models (PNDM) proposes using more advanced ODE integration techniques,
    namely Runge-Kutta method and a linear multi-step method.

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
    [`~ConfigMixin.from_config`] functions.

    For more details, see the original paper: https://arxiv.org/abs/2202.09778

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
101
        trained_betas (`jnp.ndarray`, optional):
102
103
104
105
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
        skip_prk_steps (`bool`):
            allows the scheduler to skip the Runge-Kutta steps that are defined in the original paper as being required
            before plms steps; defaults to `False`.
106
107
108
109
110
111
112
113
        set_alpha_to_one (`bool`, default `False`):
            each diffusion step uses the value of alphas product at that step and at the previous one. For the final
            step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the value of alpha at step 0.
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
114
115
    """

116
117
118
119
    @property
    def has_state(self):
        return True

120
121
122
123
124
125
126
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
127
        trained_betas: Optional[jnp.ndarray] = None,
128
        skip_prk_steps: bool = False,
129
130
        set_alpha_to_one: bool = False,
        steps_offset: int = 0,
131
132
    ):
        if trained_betas is not None:
133
            self.betas = jnp.asarray(trained_betas)
134
        if beta_schedule == "linear":
135
            self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32)
136
137
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
138
            self.betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2
139
140
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
141
            self.betas = betas_for_alpha_bar(num_train_timesteps)
142
143
144
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

145
146
147
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0)

148
149
        self.final_alpha_cumprod = jnp.array(1.0) if set_alpha_to_one else self.alphas_cumprod[0]

150
151
152
153
154
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
        # mainly at formula (9), (12), (13) and the Algorithm 2.
        self.pndm_order = 4

155
156
    def create_state(self):
        return PNDMSchedulerState.create(num_train_timesteps=self.config.num_train_timesteps)
157

158
    def set_timesteps(self, state: PNDMSchedulerState, num_inference_steps: int) -> PNDMSchedulerState:
159
160
161
162
163
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            state (`PNDMSchedulerState`):
164
                the `FlaxPNDMScheduler` state data class instance.
165
166
167
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
168
169
        offset = self.config.steps_offset

170
171
        step_ratio = self.config.num_train_timesteps // num_inference_steps
        # creates integer timesteps by multiplying by ratio
172
        # rounding to avoid issues when num_inference_step is power of 3
173
        _timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round() + offset
174

175
        state = state.replace(num_inference_steps=num_inference_steps, _timesteps=_timesteps)
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

        if self.config.skip_prk_steps:
            # for some models like stable diffusion the prk steps can/should be skipped to
            # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation
            # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51
            state = state.replace(
                prk_timesteps=jnp.array([]),
                plms_timesteps=jnp.concatenate(
                    [state._timesteps[:-1], state._timesteps[-2:-1], state._timesteps[-1:]]
                )[::-1],
            )
        else:
            prk_timesteps = jnp.array(state._timesteps[-self.pndm_order :]).repeat(2) + jnp.tile(
                jnp.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order
            )

            state = state.replace(
                prk_timesteps=(prk_timesteps[:-1].repeat(2)[1:-1])[::-1],
                plms_timesteps=state._timesteps[:-3][::-1],
            )

        return state.replace(
            timesteps=jnp.concatenate([state.prk_timesteps, state.plms_timesteps]).astype(jnp.int64),
            ets=jnp.array([]),
            counter=0,
        )

    def step(
        self,
        state: PNDMSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
        return_dict: bool = True,
    ) -> Union[FlaxSchedulerOutput, Tuple]:
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`.

        Args:
218
            state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
            [`FlaxSchedulerOutput`] or `tuple`: [`FlaxSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.

        """
        if state.counter < len(state.prk_timesteps) and not self.config.skip_prk_steps:
            return self.step_prk(
                state=state, model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict
            )
        else:
            return self.step_plms(
                state=state, model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict
            )

    def step_prk(
        self,
        state: PNDMSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
        return_dict: bool = True,
    ) -> Union[FlaxSchedulerOutput, Tuple]:
        """
        Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the
        solution to the differential equation.

        Args:
252
            state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
            [`FlaxSchedulerOutput`] or `tuple`: [`FlaxSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.

        """
        if state.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        diff_to_prev = 0 if state.counter % 2 else self.config.num_train_timesteps // state.num_inference_steps // 2
270
        prev_timestep = timestep - diff_to_prev
271
272
273
        timestep = state.prk_timesteps[state.counter // 4 * 4]

        if state.counter % 4 == 0:
274
            state = state.replace(
275
276
277
278
279
                cur_model_output=state.cur_model_output + 1 / 6 * model_output,
                ets=state.ets.append(model_output),
                cur_sample=sample,
            )
        elif (self.counter - 1) % 4 == 0:
280
            state = state.replace(cur_model_output=state.cur_model_output + 1 / 3 * model_output)
281
        elif (self.counter - 2) % 4 == 0:
282
            state = state.replace(cur_model_output=state.cur_model_output + 1 / 3 * model_output)
283
284
        elif (self.counter - 3) % 4 == 0:
            model_output = state.cur_model_output + 1 / 6 * model_output
285
            state = state.replace(cur_model_output=0)
286
287
288
289

        # cur_sample should not be `None`
        cur_sample = state.cur_sample if state.cur_sample is not None else sample

290
        prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output)
291
        state = state.replace(counter=state.counter + 1)
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

        if not return_dict:
            return (prev_sample, state)

        return FlaxSchedulerOutput(prev_sample=prev_sample, state=state)

    def step_plms(
        self,
        state: PNDMSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
        return_dict: bool = True,
    ) -> Union[FlaxSchedulerOutput, Tuple]:
        """
        Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
        times to approximate the solution.

        Args:
311
            state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class

        Returns:
            [`FlaxSchedulerOutput`] or `tuple`: [`FlaxSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.

        """
        if state.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        if not self.config.skip_prk_steps and len(state.ets) < 3:
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

336
        prev_timestep = timestep - self.config.num_train_timesteps // state.num_inference_steps
337
338

        if state.counter != 1:
339
            state = state.replace(ets=state.ets.append(model_output))
340
341
342
343
344
345
        else:
            prev_timestep = timestep
            timestep = timestep + self.config.num_train_timesteps // state.num_inference_steps

        if len(state.ets) == 1 and state.counter == 0:
            model_output = model_output
346
            state = state.replace(cur_sample=sample)
347
348
349
        elif len(state.ets) == 1 and state.counter == 1:
            model_output = (model_output + state.ets[-1]) / 2
            sample = state.cur_sample
350
            state = state.replace(cur_sample=None)
351
352
353
354
355
356
357
358
359
        elif len(state.ets) == 2:
            model_output = (3 * state.ets[-1] - state.ets[-2]) / 2
        elif len(state.ets) == 3:
            model_output = (23 * state.ets[-1] - 16 * state.ets[-2] + 5 * state.ets[-3]) / 12
        else:
            model_output = (1 / 24) * (
                55 * state.ets[-1] - 59 * state.ets[-2] + 37 * state.ets[-3] - 9 * state.ets[-4]
            )

360
        prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output)
361
        state = state.replace(counter=state.counter + 1)
362
363
364
365
366
367

        if not return_dict:
            return (prev_sample, state)

        return FlaxSchedulerOutput(prev_sample=prev_sample, state=state)

368
    def _get_prev_sample(self, sample, timestep, prev_timestep, model_output):
369
370
371
372
373
374
375
376
377
378
379
380
        # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
        # model_output -> e_θ(x_t, t)
        # prev_sample -> x_(t−δ)
381
382
        alpha_prod_t = self.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
        model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
        prev_sample = (
            sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff
        )

        return prev_sample

    def add_noise(
        self,
        original_samples: jnp.ndarray,
        noise: jnp.ndarray,
        timesteps: jnp.ndarray,
    ) -> jnp.ndarray:
410
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
411
412
413
414
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod[..., None]

415
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
416
417
418
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod[..., None]
419
420
421
422
423
424

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps