test_audioldm2.py 23.9 KB
Newer Older
Sanchit Gandhi's avatar
Sanchit Gandhi committed
1
# coding=utf-8
2
# Copyright 2025 HuggingFace Inc.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import gc
import unittest

import numpy as np
21
import pytest
Sanchit Gandhi's avatar
Sanchit Gandhi committed
22
23
24
25
26
27
import torch
from transformers import (
    ClapConfig,
    ClapFeatureExtractor,
    ClapModel,
    GPT2Config,
hlky's avatar
hlky committed
28
    GPT2LMHeadModel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    RobertaTokenizer,
    SpeechT5HifiGan,
    SpeechT5HifiGanConfig,
    T5Config,
    T5EncoderModel,
    T5Tokenizer,
)

from diffusers import (
    AudioLDM2Pipeline,
    AudioLDM2ProjectionModel,
    AudioLDM2UNet2DConditionModel,
    AutoencoderKL,
    DDIMScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
)
46
from diffusers.utils import is_transformers_version
47
48

from ...testing_utils import (
49
50
51
52
53
54
    backend_empty_cache,
    enable_full_determinism,
    is_torch_version,
    nightly,
    torch_device,
)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class AudioLDM2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = AudioLDM2Pipeline
    params = TEXT_TO_AUDIO_PARAMS
    batch_params = TEXT_TO_AUDIO_BATCH_PARAMS
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "num_waveforms_per_prompt",
            "generator",
            "latents",
            "output_type",
            "return_dict",
            "callback",
            "callback_steps",
        ]
    )

Marc Sun's avatar
Marc Sun committed
79
80
    supports_dduf = False

Sanchit Gandhi's avatar
Sanchit Gandhi committed
81
82
83
    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = AudioLDM2UNet2DConditionModel(
84
85
86
            block_out_channels=(8, 16),
            layers_per_block=1,
            norm_num_groups=8,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
87
88
89
90
91
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
92
            cross_attention_dim=(8, 16),
Sanchit Gandhi's avatar
Sanchit Gandhi committed
93
94
95
96
97
98
99
100
101
102
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
103
            block_out_channels=[8, 16],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
104
105
            in_channels=1,
            out_channels=1,
106
            norm_num_groups=8,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
107
108
109
110
111
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        text_branch_config = {
            "bos_token_id": 0,
            "eos_token_id": 2,
            "hidden_size": 8,
            "intermediate_size": 37,
            "layer_norm_eps": 1e-05,
            "num_attention_heads": 1,
            "num_hidden_layers": 1,
            "pad_token_id": 1,
            "vocab_size": 1000,
            "projection_dim": 8,
        }
        audio_branch_config = {
            "spec_size": 8,
            "window_size": 4,
            "num_mel_bins": 8,
            "intermediate_size": 37,
            "layer_norm_eps": 1e-05,
            "depths": [1, 1],
            "num_attention_heads": [1, 1],
            "num_hidden_layers": 1,
            "hidden_size": 192,
            "projection_dim": 8,
            "patch_size": 2,
            "patch_stride": 2,
            "patch_embed_input_channels": 4,
        }
139
140
        text_encoder_config = ClapConfig(
            text_config=text_branch_config, audio_config=audio_branch_config, projection_dim=16
Sanchit Gandhi's avatar
Sanchit Gandhi committed
141
142
143
144
145
146
147
148
149
150
151
152
153
        )
        text_encoder = ClapModel(text_encoder_config)
        tokenizer = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta", model_max_length=77)
        feature_extractor = ClapFeatureExtractor.from_pretrained(
            "hf-internal-testing/tiny-random-ClapModel", hop_length=7900
        )

        torch.manual_seed(0)
        text_encoder_2_config = T5Config(
            vocab_size=32100,
            d_model=32,
            d_ff=37,
            d_kv=8,
154
155
            num_heads=1,
            num_layers=1,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
156
157
158
159
160
161
162
        )
        text_encoder_2 = T5EncoderModel(text_encoder_2_config)
        tokenizer_2 = T5Tokenizer.from_pretrained("hf-internal-testing/tiny-random-T5Model", model_max_length=77)

        torch.manual_seed(0)
        language_model_config = GPT2Config(
            n_embd=16,
163
164
            n_head=1,
            n_layer=1,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
165
166
167
168
            vocab_size=1000,
            n_ctx=99,
            n_positions=99,
        )
hlky's avatar
hlky committed
169
        language_model = GPT2LMHeadModel(language_model_config)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
170
171
172
        language_model.config.max_new_tokens = 8

        torch.manual_seed(0)
173
174
175
176
177
        projection_model = AudioLDM2ProjectionModel(
            text_encoder_dim=16,
            text_encoder_1_dim=32,
            langauge_model_dim=16,
        )
Sanchit Gandhi's avatar
Sanchit Gandhi committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

        vocoder_config = SpeechT5HifiGanConfig(
            model_in_dim=8,
            sampling_rate=16000,
            upsample_initial_channel=16,
            upsample_rates=[2, 2],
            upsample_kernel_sizes=[4, 4],
            resblock_kernel_sizes=[3, 7],
            resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]],
            normalize_before=False,
        )

        vocoder = SpeechT5HifiGan(vocoder_config)

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "feature_extractor": feature_extractor,
            "language_model": language_model,
            "projection_model": projection_model,
            "vocoder": vocoder,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A hammer hitting a wooden surface",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
        }
        return inputs

220
221
222
223
224
    @pytest.mark.xfail(
        condition=is_transformers_version(">=", "4.54.1"),
        reason="Test currently fails on Transformers version 4.54.1.",
        strict=False,
    )
Sanchit Gandhi's avatar
Sanchit Gandhi committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    def test_audioldm2_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components()
        audioldm_pipe = AudioLDM2Pipeline(**components)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = audioldm_pipe(**inputs)
        audio = output.audios[0]

        assert audio.ndim == 1
        assert len(audio) == 256

        audio_slice = audio[:10]
        expected_slice = np.array(
242
243
244
245
246
247
248
249
250
251
252
253
            [
                2.602e-03,
                1.729e-03,
                1.863e-03,
                -2.219e-03,
                -2.656e-03,
                -2.017e-03,
                -2.648e-03,
                -2.115e-03,
                -2.502e-03,
                -2.081e-03,
            ]
Sanchit Gandhi's avatar
Sanchit Gandhi committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
        )

        assert np.abs(audio_slice - expected_slice).max() < 1e-4

    def test_audioldm2_prompt_embeds(self):
        components = self.get_dummy_components()
        audioldm_pipe = AudioLDM2Pipeline(**components)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = audioldm_pipe(**inputs)
        audio_1 = output.audios[0]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = audioldm_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=audioldm_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        clap_prompt_embeds = audioldm_pipe.text_encoder.get_text_features(text_inputs)
        clap_prompt_embeds = clap_prompt_embeds[:, None, :]

        text_inputs = audioldm_pipe.tokenizer_2(
            prompt,
            padding="max_length",
            max_length=True,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        t5_prompt_embeds = audioldm_pipe.text_encoder_2(
            text_inputs,
        )
        t5_prompt_embeds = t5_prompt_embeds[0]

        projection_embeds = audioldm_pipe.projection_model(clap_prompt_embeds, t5_prompt_embeds)[0]
        generated_prompt_embeds = audioldm_pipe.generate_language_model(projection_embeds, max_new_tokens=8)

        inputs["prompt_embeds"] = t5_prompt_embeds
        inputs["generated_prompt_embeds"] = generated_prompt_embeds

        # forward
        output = audioldm_pipe(**inputs)
        audio_2 = output.audios[0]

        assert np.abs(audio_1 - audio_2).max() < 1e-2

    def test_audioldm2_negative_prompt_embeds(self):
        components = self.get_dummy_components()
        audioldm_pipe = AudioLDM2Pipeline(**components)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = audioldm_pipe(**inputs)
        audio_1 = output.audios[0]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        embeds = []
        generated_embeds = []
        for p in [prompt, negative_prompt]:
            text_inputs = audioldm_pipe.tokenizer(
                p,
                padding="max_length",
                max_length=audioldm_pipe.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_inputs = text_inputs["input_ids"].to(torch_device)

            clap_prompt_embeds = audioldm_pipe.text_encoder.get_text_features(text_inputs)
            clap_prompt_embeds = clap_prompt_embeds[:, None, :]

            text_inputs = audioldm_pipe.tokenizer_2(
                prompt,
                padding="max_length",
                max_length=True if len(embeds) == 0 else embeds[0].shape[1],
                truncation=True,
                return_tensors="pt",
            )
            text_inputs = text_inputs["input_ids"].to(torch_device)

            t5_prompt_embeds = audioldm_pipe.text_encoder_2(
                text_inputs,
            )
            t5_prompt_embeds = t5_prompt_embeds[0]

            projection_embeds = audioldm_pipe.projection_model(clap_prompt_embeds, t5_prompt_embeds)[0]
            generated_prompt_embeds = audioldm_pipe.generate_language_model(projection_embeds, max_new_tokens=8)

            embeds.append(t5_prompt_embeds)
            generated_embeds.append(generated_prompt_embeds)

        inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds
        inputs["generated_prompt_embeds"], inputs["negative_generated_prompt_embeds"] = generated_embeds

        # forward
        output = audioldm_pipe(**inputs)
        audio_2 = output.audios[0]

        assert np.abs(audio_1 - audio_2).max() < 1e-2

375
376
377
378
379
    @pytest.mark.xfail(
        condition=is_transformers_version(">=", "4.54.1"),
        reason="Test currently fails on Transformers version 4.54.1.",
        strict=False,
    )
Sanchit Gandhi's avatar
Sanchit Gandhi committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    def test_audioldm2_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        audioldm_pipe = AudioLDM2Pipeline(**components)
        audioldm_pipe = audioldm_pipe.to(device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        negative_prompt = "egg cracking"
        output = audioldm_pipe(**inputs, negative_prompt=negative_prompt)
        audio = output.audios[0]

        assert audio.ndim == 1
        assert len(audio) == 256

        audio_slice = audio[:10]
        expected_slice = np.array(
398
            [0.0026, 0.0017, 0.0018, -0.0022, -0.0026, -0.002, -0.0026, -0.0021, -0.0025, -0.0021]
Sanchit Gandhi's avatar
Sanchit Gandhi committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
        )

        assert np.abs(audio_slice - expected_slice).max() < 1e-4

    def test_audioldm2_num_waveforms_per_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        audioldm_pipe = AudioLDM2Pipeline(**components)
        audioldm_pipe = audioldm_pipe.to(device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        prompt = "A hammer hitting a wooden surface"

        # test num_waveforms_per_prompt=1 (default)
        audios = audioldm_pipe(prompt, num_inference_steps=2).audios

        assert audios.shape == (1, 256)

        # test num_waveforms_per_prompt=1 (default) for batch of prompts
        batch_size = 2
        audios = audioldm_pipe([prompt] * batch_size, num_inference_steps=2).audios

        assert audios.shape == (batch_size, 256)

        # test num_waveforms_per_prompt for single prompt
425
        num_waveforms_per_prompt = 1
Sanchit Gandhi's avatar
Sanchit Gandhi committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
        audios = audioldm_pipe(prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt).audios

        assert audios.shape == (num_waveforms_per_prompt, 256)

        # test num_waveforms_per_prompt for batch of prompts
        batch_size = 2
        audios = audioldm_pipe(
            [prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt
        ).audios

        assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)

    def test_audioldm2_audio_length_in_s(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        audioldm_pipe = AudioLDM2Pipeline(**components)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)
        vocoder_sampling_rate = audioldm_pipe.vocoder.config.sampling_rate

        inputs = self.get_dummy_inputs(device)
        output = audioldm_pipe(audio_length_in_s=0.016, **inputs)
        audio = output.audios[0]

        assert audio.ndim == 1
        assert len(audio) / vocoder_sampling_rate == 0.016

        output = audioldm_pipe(audio_length_in_s=0.032, **inputs)
        audio = output.audios[0]

        assert audio.ndim == 1
        assert len(audio) / vocoder_sampling_rate == 0.032

    def test_audioldm2_vocoder_model_in_dim(self):
        components = self.get_dummy_components()
        audioldm_pipe = AudioLDM2Pipeline(**components)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        prompt = ["hey"]

        output = audioldm_pipe(prompt, num_inference_steps=1)
        audio_shape = output.audios.shape
        assert audio_shape == (1, 256)

        config = audioldm_pipe.vocoder.config
        config.model_in_dim *= 2
        audioldm_pipe.vocoder = SpeechT5HifiGan(config).to(torch_device)
        output = audioldm_pipe(prompt, num_inference_steps=1)
        audio_shape = output.audios.shape
        # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
        assert audio_shape == (1, 256)

    def test_attention_slicing_forward_pass(self):
        self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False)

482
    @unittest.skip("Raises a not implemented error in AudioLDM2")
Sanchit Gandhi's avatar
Sanchit Gandhi committed
483
    def test_xformers_attention_forwardGenerator_pass(self):
484
        pass
Sanchit Gandhi's avatar
Sanchit Gandhi committed
485
486

    def test_dict_tuple_outputs_equivalent(self):
487
488
        # increase tolerance from 1e-4 -> 3e-4 to account for large composite model
        super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-4)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
489

490
491
492
493
494
    @pytest.mark.xfail(
        condition=is_torch_version(">=", "2.7"),
        reason="Test currently fails on PyTorch 2.7.",
        strict=False,
    )
Sanchit Gandhi's avatar
Sanchit Gandhi committed
495
496
    def test_inference_batch_single_identical(self):
        # increase tolerance from 1e-4 -> 2e-4 to account for large composite model
497
        self._test_inference_batch_single_identical(expected_max_diff=2e-4)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524

    def test_save_load_local(self):
        # increase tolerance from 1e-4 -> 2e-4 to account for large composite model
        super().test_save_load_local(expected_max_difference=2e-4)

    def test_save_load_optional_components(self):
        # increase tolerance from 1e-4 -> 2e-4 to account for large composite model
        super().test_save_load_optional_components(expected_max_difference=2e-4)

    def test_to_dtype(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        # The method component.dtype returns the dtype of the first parameter registered in the model, not the
        # dtype of the entire model. In the case of CLAP, the first parameter is a float64 constant (logit scale)
        model_dtypes = {key: component.dtype for key, component in components.items() if hasattr(component, "dtype")}

        # Without the logit scale parameters, everything is float32
        model_dtypes.pop("text_encoder")
        self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes.values()))

        # the CLAP sub-models are float32
        model_dtypes["clap_text_branch"] = components["text_encoder"].text_model.dtype
        self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes.values()))

        # Once we send to fp16, all params are in half-precision, including the logit scale
525
        pipe.to(dtype=torch.float16)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
526
527
528
        model_dtypes = {key: component.dtype for key, component in components.items() if hasattr(component, "dtype")}
        self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes.values()))

529
    @unittest.skip("Test not supported.")
530
531
532
    def test_sequential_cpu_offload_forward_pass(self):
        pass

533
534
535
536
    @unittest.skip("Test not supported for now because of the use of `projection_model` in `encode_prompt()`.")
    def test_encode_prompt_works_in_isolation(self):
        pass

hlky's avatar
hlky committed
537
538
539
540
541
542
543
544
545
546
547
548
    @unittest.skip("Not supported yet due to CLAPModel.")
    def test_sequential_offload_forward_pass_twice(self):
        pass

    @unittest.skip("Not supported yet, the second forward has mixed devices and `vocoder` is not offloaded.")
    def test_cpu_offload_forward_pass_twice(self):
        pass

    @unittest.skip("Not supported yet. `vocoder` is not offloaded.")
    def test_model_cpu_offload_forward_pass(self):
        pass

Sanchit Gandhi's avatar
Sanchit Gandhi committed
549

550
@nightly
Sanchit Gandhi's avatar
Sanchit Gandhi committed
551
class AudioLDM2PipelineSlowTests(unittest.TestCase):
552
553
554
    def setUp(self):
        super().setUp()
        gc.collect()
555
        backend_empty_cache(torch_device)
556

Sanchit Gandhi's avatar
Sanchit Gandhi committed
557
558
559
    def tearDown(self):
        super().tearDown()
        gc.collect()
560
        backend_empty_cache(torch_device)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574

    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "A hammer hitting a wooden surface",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 2.5,
        }
        return inputs

575
576
577
578
579
580
581
582
583
584
585
586
587
588
    def get_inputs_tts(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "A men saying",
            "transcription": "hello my name is John",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 2.5,
        }
        return inputs

Sanchit Gandhi's avatar
Sanchit Gandhi committed
589
    def test_audioldm2(self):
590
        audioldm_pipe = AudioLDM2Pipeline.from_pretrained("cvssp/audioldm2")
Sanchit Gandhi's avatar
Sanchit Gandhi committed
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25
        audio = audioldm_pipe(**inputs).audios[0]

        assert audio.ndim == 1
        assert len(audio) == 81952

        # check the portion of the generated audio with the largest dynamic range (reduces flakiness)
        audio_slice = audio[17275:17285]
        expected_slice = np.array([0.0791, 0.0666, 0.1158, 0.1227, 0.1171, -0.2880, -0.1940, -0.0283, -0.0126, 0.1127])
        max_diff = np.abs(expected_slice - audio_slice).max()
        assert max_diff < 1e-3

    def test_audioldm2_lms(self):
608
        audioldm_pipe = AudioLDM2Pipeline.from_pretrained("cvssp/audioldm2")
Sanchit Gandhi's avatar
Sanchit Gandhi committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
        audioldm_pipe.scheduler = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        audio = audioldm_pipe(**inputs).audios[0]

        assert audio.ndim == 1
        assert len(audio) == 81952

        # check the portion of the generated audio with the largest dynamic range (reduces flakiness)
        audio_slice = audio[31390:31400]
        expected_slice = np.array(
            [-0.1318, -0.0577, 0.0446, -0.0573, 0.0659, 0.1074, -0.2600, 0.0080, -0.2190, -0.4301]
        )
        max_diff = np.abs(expected_slice - audio_slice).max()
        assert max_diff < 1e-3

    def test_audioldm2_large(self):
628
        audioldm_pipe = AudioLDM2Pipeline.from_pretrained("cvssp/audioldm2-large")
Sanchit Gandhi's avatar
Sanchit Gandhi committed
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        audio = audioldm_pipe(**inputs).audios[0]

        assert audio.ndim == 1
        assert len(audio) == 81952

        # check the portion of the generated audio with the largest dynamic range (reduces flakiness)
        audio_slice = audio[8825:8835]
        expected_slice = np.array(
            [-0.1829, -0.1461, 0.0759, -0.1493, -0.1396, 0.5783, 0.3001, -0.3038, -0.0639, -0.2244]
        )
        max_diff = np.abs(expected_slice - audio_slice).max()
        assert max_diff < 1e-3
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

    def test_audioldm2_tts(self):
        audioldm_tts_pipe = AudioLDM2Pipeline.from_pretrained("anhnct/audioldm2_gigaspeech")
        audioldm_tts_pipe = audioldm_tts_pipe.to(torch_device)
        audioldm_tts_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs_tts(torch_device)
        audio = audioldm_tts_pipe(**inputs).audios[0]

        assert audio.ndim == 1
        assert len(audio) == 81952

        # check the portion of the generated audio with the largest dynamic range (reduces flakiness)
        audio_slice = audio[8825:8835]
        expected_slice = np.array(
            [-0.1829, -0.1461, 0.0759, -0.1493, -0.1396, 0.5783, 0.3001, -0.3038, -0.0639, -0.2244]
        )
        max_diff = np.abs(expected_slice - audio_slice).max()
        assert max_diff < 1e-3