image_processor.py 7.89 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
16
from typing import List, Optional, Union
YiYi Xu's avatar
YiYi Xu committed
17
18
19
20
21
22
23

import numpy as np
import PIL
import torch
from PIL import Image

from .configuration_utils import ConfigMixin, register_to_config
24
from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
YiYi Xu's avatar
YiYi Xu committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84


class VaeImageProcessor(ConfigMixin):
    """
    Image Processor for VAE

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
        vae_scale_factor (`int`, *optional*, defaults to `8`):
            VAE scale factor. If `do_resize` is True, the image will be automatically resized to multiples of this
            factor.
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image to [-1,1]
    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = True,
    ):
        super().__init__()

    @staticmethod
    def numpy_to_pil(images):
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]

        return pil_images

    @staticmethod
    def numpy_to_pt(images):
        """
        Convert a numpy image to a pytorch tensor
        """
        if images.ndim == 3:
            images = images[..., None]

        images = torch.from_numpy(images.transpose(0, 3, 1, 2))
        return images

    @staticmethod
    def pt_to_numpy(images):
        """
85
        Convert a pytorch tensor to a numpy image
YiYi Xu's avatar
YiYi Xu committed
86
87
88
89
90
91
92
93
94
95
96
        """
        images = images.cpu().permute(0, 2, 3, 1).float().numpy()
        return images

    @staticmethod
    def normalize(images):
        """
        Normalize an image array to [-1,1]
        """
        return 2.0 * images - 1.0

97
98
99
100
101
102
103
    @staticmethod
    def denormalize(images):
        """
        Denormalize an image array to [0,1]
        """
        return (images / 2 + 0.5).clamp(0, 1)

YiYi Xu's avatar
YiYi Xu committed
104
105
106
107
108
    def resize(self, images: PIL.Image.Image) -> PIL.Image.Image:
        """
        Resize a PIL image. Both height and width will be downscaled to the next integer multiple of `vae_scale_factor`
        """
        w, h = images.size
109
110
        w, h = (x - x % self.config.vae_scale_factor for x in (w, h))  # resize to integer multiple of vae_scale_factor
        images = images.resize((w, h), resample=PIL_INTERPOLATION[self.config.resample])
YiYi Xu's avatar
YiYi Xu committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        return images

    def preprocess(
        self,
        image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
    ) -> torch.Tensor:
        """
        Preprocess the image input, accepted formats are PIL images, numpy arrays or pytorch tensors"
        """
        supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
        if isinstance(image, supported_formats):
            image = [image]
        elif not (isinstance(image, list) and all(isinstance(i, supported_formats) for i in image)):
            raise ValueError(
                f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support {', '.join(supported_formats)}"
            )

        if isinstance(image[0], PIL.Image.Image):
129
            if self.config.do_resize:
YiYi Xu's avatar
YiYi Xu committed
130
131
132
133
134
135
136
137
138
                image = [self.resize(i) for i in image]
            image = [np.array(i).astype(np.float32) / 255.0 for i in image]
            image = np.stack(image, axis=0)  # to np
            image = self.numpy_to_pt(image)  # to pt

        elif isinstance(image[0], np.ndarray):
            image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
            image = self.numpy_to_pt(image)
            _, _, height, width = image.shape
139
140
141
            if self.config.do_resize and (
                height % self.config.vae_scale_factor != 0 or width % self.config.vae_scale_factor != 0
            ):
YiYi Xu's avatar
YiYi Xu committed
142
                raise ValueError(
143
                    f"Currently we only support resizing for PIL image - please resize your numpy array to be divisible by {self.config.vae_scale_factor}"
YiYi Xu's avatar
YiYi Xu committed
144
145
146
147
148
149
                    f"currently the sizes are {height} and {width}. You can also pass a PIL image instead to use resize option in VAEImageProcessor"
                )

        elif isinstance(image[0], torch.Tensor):
            image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
            _, _, height, width = image.shape
150
151
152
            if self.config.do_resize and (
                height % self.config.vae_scale_factor != 0 or width % self.config.vae_scale_factor != 0
            ):
YiYi Xu's avatar
YiYi Xu committed
153
                raise ValueError(
154
                    f"Currently we only support resizing for PIL image - please resize your pytorch tensor to be divisible by {self.config.vae_scale_factor}"
YiYi Xu's avatar
YiYi Xu committed
155
156
157
158
                    f"currently the sizes are {height} and {width}. You can also pass a PIL image instead to use resize option in VAEImageProcessor"
                )

        # expected range [0,1], normalize to [-1,1]
159
        do_normalize = self.config.do_normalize
YiYi Xu's avatar
YiYi Xu committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        if image.min() < 0:
            warnings.warn(
                "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
                f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
                FutureWarning,
            )
            do_normalize = False

        if do_normalize:
            image = self.normalize(image)

        return image

    def postprocess(
        self,
175
        image: torch.FloatTensor,
YiYi Xu's avatar
YiYi Xu committed
176
        output_type: str = "pil",
177
        do_denormalize: Optional[List[bool]] = None,
YiYi Xu's avatar
YiYi Xu committed
178
    ):
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        if not isinstance(image, torch.Tensor):
            raise ValueError(
                f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
            )
        if output_type not in ["latent", "pt", "np", "pil"]:
            deprecation_message = (
                f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
                "`pil`, `np`, `pt`, `latent`"
            )
            deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
            output_type = "np"

        if output_type == "latent":
            return image

        if do_denormalize is None:
            do_denormalize = [self.config.do_normalize] * image.shape[0]

        image = torch.stack(
            [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
        )

        if output_type == "pt":
YiYi Xu's avatar
YiYi Xu committed
202
203
204
205
206
207
            return image

        image = self.pt_to_numpy(image)

        if output_type == "np":
            return image
208
209

        if output_type == "pil":
YiYi Xu's avatar
YiYi Xu committed
210
            return self.numpy_to_pil(image)