pipeline_unclip.py 23.8 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 Kakao Brain and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
16
from typing import List, Optional, Tuple, Union
Will Berman's avatar
Will Berman committed
17
18
19
20

import torch
from torch.nn import functional as F
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
21
from transformers.models.clip.modeling_clip import CLIPTextModelOutput
Will Berman's avatar
Will Berman committed
22

23
from ...models import PriorTransformer, UNet2DConditionModel, UNet2DModel
24
25
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
26
from ...schedulers import UnCLIPScheduler
27
from ...utils import is_accelerate_available, logging, randn_tensor
Will Berman's avatar
Will Berman committed
28
29
30
31
32
33
34
from .text_proj import UnCLIPTextProjModel


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class UnCLIPPipeline(DiffusionPipeline):
Will Berman's avatar
Will Berman committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    """
    Pipeline for text-to-image generation using unCLIP

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        text_encoder ([`CLIPTextModelWithProjection`]):
            Frozen text-encoder.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        prior ([`PriorTransformer`]):
            The canonincal unCLIP prior to approximate the image embedding from the text embedding.
Will Berman's avatar
Will Berman committed
49
50
        text_proj ([`UnCLIPTextProjModel`]):
            Utility class to prepare and combine the embeddings before they are passed to the decoder.
Will Berman's avatar
Will Berman committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        decoder ([`UNet2DConditionModel`]):
            The decoder to invert the image embedding into an image.
        super_res_first ([`UNet2DModel`]):
            Super resolution unet. Used in all but the last step of the super resolution diffusion process.
        super_res_last ([`UNet2DModel`]):
            Super resolution unet. Used in the last step of the super resolution diffusion process.
        prior_scheduler ([`UnCLIPScheduler`]):
            Scheduler used in the prior denoising process. Just a modified DDPMScheduler.
        decoder_scheduler ([`UnCLIPScheduler`]):
            Scheduler used in the decoder denoising process. Just a modified DDPMScheduler.
        super_res_scheduler ([`UnCLIPScheduler`]):
            Scheduler used in the super resolution denoising process. Just a modified DDPMScheduler.

    """

Will Berman's avatar
Will Berman committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    prior: PriorTransformer
    decoder: UNet2DConditionModel
    text_proj: UnCLIPTextProjModel
    text_encoder: CLIPTextModelWithProjection
    tokenizer: CLIPTokenizer
    super_res_first: UNet2DModel
    super_res_last: UNet2DModel

    prior_scheduler: UnCLIPScheduler
    decoder_scheduler: UnCLIPScheduler
    super_res_scheduler: UnCLIPScheduler

    def __init__(
        self,
        prior: PriorTransformer,
        decoder: UNet2DConditionModel,
        text_encoder: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        text_proj: UnCLIPTextProjModel,
        super_res_first: UNet2DModel,
        super_res_last: UNet2DModel,
        prior_scheduler: UnCLIPScheduler,
        decoder_scheduler: UnCLIPScheduler,
        super_res_scheduler: UnCLIPScheduler,
    ):
        super().__init__()

        self.register_modules(
            prior=prior,
            decoder=decoder,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            text_proj=text_proj,
            super_res_first=super_res_first,
            super_res_last=super_res_last,
            prior_scheduler=prior_scheduler,
            decoder_scheduler=decoder_scheduler,
            super_res_scheduler=super_res_scheduler,
        )

    def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
        if latents is None:
108
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
Will Berman's avatar
Will Berman committed
109
110
111
112
113
114
115
116
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        latents = latents * scheduler.init_noise_sigma
        return latents

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
        text_attention_mask: Optional[torch.Tensor] = None,
    ):
        if text_model_output is None:
            batch_size = len(prompt) if isinstance(prompt, list) else 1
            # get prompt text embeddings
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
133
                truncation=True,
134
                return_tensors="pt",
Will Berman's avatar
Will Berman committed
135
            )
136
137
138
            text_input_ids = text_inputs.input_ids
            text_mask = text_inputs.attention_mask.bool().to(device)

139
140
141
142
143
144
145
146
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
147
148
149
150
151
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )
                text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
Will Berman's avatar
Will Berman committed
152

153
            text_encoder_output = self.text_encoder(text_input_ids.to(device))
Will Berman's avatar
Will Berman committed
154

155
            prompt_embeds = text_encoder_output.text_embeds
156
157
158
159
            text_encoder_hidden_states = text_encoder_output.last_hidden_state

        else:
            batch_size = text_model_output[0].shape[0]
160
            prompt_embeds, text_encoder_hidden_states = text_model_output[0], text_model_output[1]
161
            text_mask = text_attention_mask
Will Berman's avatar
Will Berman committed
162

163
        prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
Will Berman's avatar
Will Berman committed
164
        text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
165
        text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
Will Berman's avatar
Will Berman committed
166
167
168
169
170
171
172

        if do_classifier_free_guidance:
            uncond_tokens = [""] * batch_size

            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
173
                max_length=self.tokenizer.model_max_length,
Will Berman's avatar
Will Berman committed
174
175
176
                truncation=True,
                return_tensors="pt",
            )
177
            uncond_text_mask = uncond_input.attention_mask.bool().to(device)
178
            negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device))
Will Berman's avatar
Will Berman committed
179

180
181
            negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds
            uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state
Will Berman's avatar
Will Berman committed
182
183
184

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method

185
186
187
            seq_len = negative_prompt_embeds.shape[1]
            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)
Will Berman's avatar
Will Berman committed
188
189
190
191
192
193

            seq_len = uncond_text_encoder_hidden_states.shape[1]
            uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
            uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
                batch_size * num_images_per_prompt, seq_len, -1
            )
194
            uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)
Will Berman's avatar
Will Berman committed
195
196
197
198
199
200

            # done duplicates

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
201
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
Will Berman's avatar
Will Berman committed
202
203
204
205
            text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])

            text_mask = torch.cat([uncond_text_mask, text_mask])

206
        return prompt_embeds, text_encoder_hidden_states, text_mask
Will Berman's avatar
Will Berman committed
207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    def enable_sequential_cpu_offload(self, gpu_id=0):
        r"""
        Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's
        models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only
        when their specific submodule has its `forward` method called.
        """
        if is_accelerate_available():
            from accelerate import cpu_offload
        else:
            raise ImportError("Please install accelerate via `pip install accelerate`")

        device = torch.device(f"cuda:{gpu_id}")

        # TODO: self.prior.post_process_latents is not covered by the offload hooks, so it fails if added to the list
        models = [
            self.decoder,
            self.text_proj,
            self.text_encoder,
            self.super_res_first,
            self.super_res_last,
        ]
        for cpu_offloaded_model in models:
            if cpu_offloaded_model is not None:
                cpu_offload(cpu_offloaded_model, device)

    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
        hooks.
        """
        if self.device != torch.device("meta") or not hasattr(self.decoder, "_hf_hook"):
            return self.device
        for module in self.decoder.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device

Will Berman's avatar
Will Berman committed
251
252
253
    @torch.no_grad()
    def __call__(
        self,
254
        prompt: Optional[Union[str, List[str]]] = None,
Will Berman's avatar
Will Berman committed
255
256
257
258
        num_images_per_prompt: int = 1,
        prior_num_inference_steps: int = 25,
        decoder_num_inference_steps: int = 25,
        super_res_num_inference_steps: int = 7,
259
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
Will Berman's avatar
Will Berman committed
260
261
262
        prior_latents: Optional[torch.FloatTensor] = None,
        decoder_latents: Optional[torch.FloatTensor] = None,
        super_res_latents: Optional[torch.FloatTensor] = None,
263
264
        text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
        text_attention_mask: Optional[torch.Tensor] = None,
Will Berman's avatar
Will Berman committed
265
266
267
268
269
        prior_guidance_scale: float = 4.0,
        decoder_guidance_scale: float = 8.0,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
    ):
Will Berman's avatar
Will Berman committed
270
271
272
273
274
        """
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
275
276
                The prompt or prompts to guide the image generation. This can only be left undefined if
                `text_model_output` and `text_attention_mask` is passed.
Will Berman's avatar
Will Berman committed
277
278
279
280
281
282
283
284
285
286
287
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            prior_num_inference_steps (`int`, *optional*, defaults to 25):
                The number of denoising steps for the prior. More denoising steps usually lead to a higher quality
                image at the expense of slower inference.
            decoder_num_inference_steps (`int`, *optional*, defaults to 25):
                The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality
                image at the expense of slower inference.
            super_res_num_inference_steps (`int`, *optional*, defaults to 7):
                The number of denoising steps for super resolution. More denoising steps usually lead to a higher
                quality image at the expense of slower inference.
288
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
Will Berman's avatar
Will Berman committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            prior_latents (`torch.FloatTensor` of shape (batch size, embeddings dimension), *optional*):
                Pre-generated noisy latents to be used as inputs for the prior.
            decoder_latents (`torch.FloatTensor` of shape (batch size, channels, height, width), *optional*):
                Pre-generated noisy latents to be used as inputs for the decoder.
            super_res_latents (`torch.FloatTensor` of shape (batch size, channels, super res height, super res width), *optional*):
                Pre-generated noisy latents to be used as inputs for the decoder.
            prior_guidance_scale (`float`, *optional*, defaults to 4.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            decoder_guidance_scale (`float`, *optional*, defaults to 4.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
309
310
311
312
313
314
315
            text_model_output (`CLIPTextModelOutput`, *optional*):
                Pre-defined CLIPTextModel outputs that can be derived from the text encoder. Pre-defined text outputs
                can be passed for tasks like text embedding interpolations. Make sure to also pass
                `text_attention_mask` in this case. `prompt` can the be left to `None`.
            text_attention_mask (`torch.Tensor`, *optional*):
                Pre-defined CLIP text attention mask that can be derived from the tokenizer. Pre-defined text attention
                masks are necessary when passing `text_model_output`.
Will Berman's avatar
Will Berman committed
316
317
318
319
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
320
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Will Berman's avatar
Will Berman committed
321
        """
322
323
324
325
326
327
328
        if prompt is not None:
            if isinstance(prompt, str):
                batch_size = 1
            elif isinstance(prompt, list):
                batch_size = len(prompt)
            else:
                raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
Will Berman's avatar
Will Berman committed
329
        else:
330
331
            batch_size = text_model_output[0].shape[0]

332
        device = self._execution_device
Will Berman's avatar
Will Berman committed
333
334
335
336
337

        batch_size = batch_size * num_images_per_prompt

        do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0

338
        prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt(
339
            prompt, device, num_images_per_prompt, do_classifier_free_guidance, text_model_output, text_attention_mask
Will Berman's avatar
Will Berman committed
340
341
342
343
        )

        # prior

344
        self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device)
Will Berman's avatar
Will Berman committed
345
346
347
        prior_timesteps_tensor = self.prior_scheduler.timesteps

        embedding_dim = self.prior.config.embedding_dim
348

Will Berman's avatar
Will Berman committed
349
350
        prior_latents = self.prepare_latents(
            (batch_size, embedding_dim),
351
            prompt_embeds.dtype,
352
            device,
Will Berman's avatar
Will Berman committed
353
354
355
356
357
358
359
360
361
362
363
364
            generator,
            prior_latents,
            self.prior_scheduler,
        )

        for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents

            predicted_image_embedding = self.prior(
                latent_model_input,
                timestep=t,
365
                proj_embedding=prompt_embeds,
Will Berman's avatar
Will Berman committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
                encoder_hidden_states=text_encoder_hidden_states,
                attention_mask=text_mask,
            ).predicted_image_embedding

            if do_classifier_free_guidance:
                predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2)
                predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * (
                    predicted_image_embedding_text - predicted_image_embedding_uncond
                )

            if i + 1 == prior_timesteps_tensor.shape[0]:
                prev_timestep = None
            else:
                prev_timestep = prior_timesteps_tensor[i + 1]

            prior_latents = self.prior_scheduler.step(
                predicted_image_embedding,
                timestep=t,
                sample=prior_latents,
                generator=generator,
                prev_timestep=prev_timestep,
            ).prev_sample

        prior_latents = self.prior.post_process_latents(prior_latents)

        image_embeddings = prior_latents

        # done prior

        # decoder

        text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj(
            image_embeddings=image_embeddings,
399
            prompt_embeds=prompt_embeds,
Will Berman's avatar
Will Berman committed
400
401
402
403
            text_encoder_hidden_states=text_encoder_hidden_states,
            do_classifier_free_guidance=do_classifier_free_guidance,
        )

404
405
406
407
408
409
410
411
        if device.type == "mps":
            # HACK: MPS: There is a panic when padding bool tensors,
            # so cast to int tensor for the pad and back to bool afterwards
            text_mask = text_mask.type(torch.int)
            decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1)
            decoder_text_mask = decoder_text_mask.type(torch.bool)
        else:
            decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True)
Will Berman's avatar
Will Berman committed
412

413
        self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device)
Will Berman's avatar
Will Berman committed
414
415
416
417
418
        decoder_timesteps_tensor = self.decoder_scheduler.timesteps

        num_channels_latents = self.decoder.in_channels
        height = self.decoder.sample_size
        width = self.decoder.sample_size
419

Will Berman's avatar
Will Berman committed
420
421
422
        decoder_latents = self.prepare_latents(
            (batch_size, num_channels_latents, height, width),
            text_encoder_hidden_states.dtype,
423
            device,
Will Berman's avatar
Will Berman committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
            generator,
            decoder_latents,
            self.decoder_scheduler,
        )

        for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents

            noise_pred = self.decoder(
                sample=latent_model_input,
                timestep=t,
                encoder_hidden_states=text_encoder_hidden_states,
                class_labels=additive_clip_time_embeddings,
                attention_mask=decoder_text_mask,
            ).sample

            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1)
                noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1)
                noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond)
                noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)

            if i + 1 == decoder_timesteps_tensor.shape[0]:
                prev_timestep = None
            else:
                prev_timestep = decoder_timesteps_tensor[i + 1]

            # compute the previous noisy sample x_t -> x_t-1
            decoder_latents = self.decoder_scheduler.step(
455
                noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator
Will Berman's avatar
Will Berman committed
456
457
458
459
460
461
462
463
464
465
            ).prev_sample

        decoder_latents = decoder_latents.clamp(-1, 1)

        image_small = decoder_latents

        # done decoder

        # super res

466
        self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device)
Will Berman's avatar
Will Berman committed
467
468
469
470
471
        super_res_timesteps_tensor = self.super_res_scheduler.timesteps

        channels = self.super_res_first.in_channels // 2
        height = self.super_res_first.sample_size
        width = self.super_res_first.sample_size
472

Will Berman's avatar
Will Berman committed
473
474
475
        super_res_latents = self.prepare_latents(
            (batch_size, channels, height, width),
            image_small.dtype,
476
            device,
Will Berman's avatar
Will Berman committed
477
478
479
480
481
            generator,
            super_res_latents,
            self.super_res_scheduler,
        )

482
483
484
485
486
487
488
        if device.type == "mps":
            # MPS does not support many interpolations
            image_upscaled = F.interpolate(image_small, size=[height, width])
        else:
            interpolate_antialias = {}
            if "antialias" in inspect.signature(F.interpolate).parameters:
                interpolate_antialias["antialias"] = True
Will Berman's avatar
Will Berman committed
489

490
491
492
            image_upscaled = F.interpolate(
                image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias
            )
Will Berman's avatar
Will Berman committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

        for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)):
            # no classifier free guidance

            if i == super_res_timesteps_tensor.shape[0] - 1:
                unet = self.super_res_last
            else:
                unet = self.super_res_first

            latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1)

            noise_pred = unet(
                sample=latent_model_input,
                timestep=t,
            ).sample

            if i + 1 == super_res_timesteps_tensor.shape[0]:
                prev_timestep = None
            else:
                prev_timestep = super_res_timesteps_tensor[i + 1]

            # compute the previous noisy sample x_t -> x_t-1
            super_res_latents = self.super_res_scheduler.step(
516
                noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator
Will Berman's avatar
Will Berman committed
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
            ).prev_sample

        image = super_res_latents
        # done super res

        # post processing

        image = image * 0.5 + 0.5
        image = image.clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()

        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)