change_naming_configs_and_checkpoints.py 3.8 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the LDM checkpoints. """

import argparse
import json
19
20
import os

Patrick von Platen's avatar
Patrick von Platen committed
21
import torch
22
from transformers.file_utils import has_file
23
24

from diffusers import UNet2DConditionModel, UNet2DModel
Patrick von Platen's avatar
Patrick von Platen committed
25

26

Patrick von Platen's avatar
Patrick von Platen committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
do_only_config = False
do_only_weights = True
do_only_renaming = False


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--repo_path",
        default=None,
        type=str,
        required=True,
        help="The config json file corresponding to the architecture.",
    )

43
    parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
Patrick von Platen's avatar
Patrick von Platen committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

    args = parser.parse_args()

    config_parameters_to_change = {
        "image_size": "sample_size",
        "num_res_blocks": "layers_per_block",
        "block_channels": "block_out_channels",
        "down_blocks": "down_block_types",
        "up_blocks": "up_block_types",
        "downscale_freq_shift": "freq_shift",
        "resnet_num_groups": "norm_num_groups",
        "resnet_act_fn": "act_fn",
        "resnet_eps": "norm_eps",
        "num_head_channels": "attention_head_dim",
    }

    key_parameters_to_change = {
        "time_steps": "time_proj",
        "mid": "mid_block",
        "downsample_blocks": "down_blocks",
        "upsample_blocks": "up_blocks",
    }

    subfolder = "" if has_file(args.repo_path, "config.json") else "unet"

    with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader:
        text = reader.read()
        config = json.loads(text)

    if do_only_config:
        for key in config_parameters_to_change.keys():
            config.pop(key, None)

    if has_file(args.repo_path, "config.json"):
        model = UNet2DModel(**config)
    else:
        class_name = UNet2DConditionModel if "ldm-text2im-large-256" in args.repo_path else UNet2DModel
        model = class_name(**config)

    if do_only_config:
        model.save_config(os.path.join(args.repo_path, subfolder))

    config = dict(model.config)

    if do_only_renaming:
        for key, value in config_parameters_to_change.items():
            if key in config:
                config[value] = config[key]
                del config[key]

        config["down_block_types"] = [k.replace("UNetRes", "") for k in config["down_block_types"]]
        config["up_block_types"] = [k.replace("UNetRes", "") for k in config["up_block_types"]]

    if do_only_weights:
        state_dict = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin"))

        new_state_dict = {}
        for param_key, param_value in state_dict.items():
            if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"):
                continue
            has_changed = False
            for key, new_key in key_parameters_to_change.items():
                if not has_changed and param_key.split(".")[0] == key:
                    new_state_dict[".".join([new_key] + param_key.split(".")[1:])] = param_value
                    has_changed = True
            if not has_changed:
                new_state_dict[param_key] = param_value

        model.load_state_dict(new_state_dict)
        model.save_pretrained(os.path.join(args.repo_path, subfolder))