lpw_stable_diffusion_onnx.py 53.5 KB
Newer Older
1
2
3
4
5
import inspect
import re
from typing import Callable, List, Optional, Union

import numpy as np
6
import PIL
7
import torch
8
9
from packaging import version
from transformers import CLIPFeatureExtractor, CLIPTokenizer
10

11
import diffusers
12
from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, SchedulerMixin
13
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
14
from diffusers.utils import deprecate, logging
Patrick von Platen's avatar
Patrick von Platen committed
15
16


17
try:
18
    from diffusers.pipelines.onnx_utils import ORT_TO_NP_TYPE
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
except ImportError:
    ORT_TO_NP_TYPE = {
        "tensor(bool)": np.bool_,
        "tensor(int8)": np.int8,
        "tensor(uint8)": np.uint8,
        "tensor(int16)": np.int16,
        "tensor(uint16)": np.uint16,
        "tensor(int32)": np.int32,
        "tensor(uint32)": np.uint32,
        "tensor(int64)": np.int64,
        "tensor(uint64)": np.uint64,
        "tensor(float16)": np.float16,
        "tensor(float)": np.float32,
        "tensor(double)": np.float64,
    }

try:
    from diffusers.utils import PIL_INTERPOLATION
except ImportError:
    if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
        PIL_INTERPOLATION = {
            "linear": PIL.Image.Resampling.BILINEAR,
            "bilinear": PIL.Image.Resampling.BILINEAR,
            "bicubic": PIL.Image.Resampling.BICUBIC,
            "lanczos": PIL.Image.Resampling.LANCZOS,
            "nearest": PIL.Image.Resampling.NEAREST,
        }
    else:
        PIL_INTERPOLATION = {
            "linear": PIL.Image.LINEAR,
            "bilinear": PIL.Image.BILINEAR,
            "bicubic": PIL.Image.BICUBIC,
            "lanczos": PIL.Image.LANCZOS,
            "nearest": PIL.Image.NEAREST,
        }
# ------------------------------------------------------------------------------

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

re_attention = re.compile(
    r"""
\\\(|
\\\)|
\\\[|
\\]|
\\\\|
\\|
\(|
\[|
:([+-]?[.\d]+)\)|
\)|
]|
[^\\()\[\]:]+|
:
""",
    re.X,
)


def parse_prompt_attention(text):
    """
Yuta Hayashibe's avatar
Yuta Hayashibe committed
80
    Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    Accepted tokens are:
      (abc) - increases attention to abc by a multiplier of 1.1
      (abc:3.12) - increases attention to abc by a multiplier of 3.12
      [abc] - decreases attention to abc by a multiplier of 1.1
      \( - literal character '('
      \[ - literal character '['
      \) - literal character ')'
      \] - literal character ']'
      \\ - literal character '\'
      anything else - just text
    >>> parse_prompt_attention('normal text')
    [['normal text', 1.0]]
    >>> parse_prompt_attention('an (important) word')
    [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
    >>> parse_prompt_attention('(unbalanced')
    [['unbalanced', 1.1]]
    >>> parse_prompt_attention('\(literal\]')
    [['(literal]', 1.0]]
    >>> parse_prompt_attention('(unnecessary)(parens)')
    [['unnecessaryparens', 1.1]]
    >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
    [['a ', 1.0],
     ['house', 1.5730000000000004],
     [' ', 1.1],
     ['on', 1.0],
     [' a ', 1.1],
     ['hill', 0.55],
     [', sun, ', 1.1],
     ['sky', 1.4641000000000006],
     ['.', 1.1]]
    """

    res = []
    round_brackets = []
    square_brackets = []

    round_bracket_multiplier = 1.1
    square_bracket_multiplier = 1 / 1.1

    def multiply_range(start_position, multiplier):
        for p in range(start_position, len(res)):
            res[p][1] *= multiplier

    for m in re_attention.finditer(text):
        text = m.group(0)
        weight = m.group(1)

        if text.startswith("\\"):
            res.append([text[1:], 1.0])
        elif text == "(":
            round_brackets.append(len(res))
        elif text == "[":
            square_brackets.append(len(res))
        elif weight is not None and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), float(weight))
        elif text == ")" and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), round_bracket_multiplier)
        elif text == "]" and len(square_brackets) > 0:
            multiply_range(square_brackets.pop(), square_bracket_multiplier)
        else:
            res.append([text, 1.0])

    for pos in round_brackets:
        multiply_range(pos, round_bracket_multiplier)

    for pos in square_brackets:
        multiply_range(pos, square_bracket_multiplier)

    if len(res) == 0:
        res = [["", 1.0]]

    # merge runs of identical weights
    i = 0
    while i + 1 < len(res):
        if res[i][1] == res[i + 1][1]:
            res[i][0] += res[i + 1][0]
            res.pop(i + 1)
        else:
            i += 1

    return res


def get_prompts_with_weights(pipe, prompt: List[str], max_length: int):
    r"""
    Tokenize a list of prompts and return its tokens with weights of each token.

    No padding, starting or ending token is included.
    """
    tokens = []
    weights = []
172
    truncated = False
173
174
175
176
177
178
179
180
181
182
183
184
    for text in prompt:
        texts_and_weights = parse_prompt_attention(text)
        text_token = []
        text_weight = []
        for word, weight in texts_and_weights:
            # tokenize and discard the starting and the ending token
            token = pipe.tokenizer(word, return_tensors="np").input_ids[0, 1:-1]
            text_token += list(token)
            # copy the weight by length of token
            text_weight += [weight] * len(token)
            # stop if the text is too long (longer than truncation limit)
            if len(text_token) > max_length:
185
                truncated = True
186
187
188
                break
        # truncate
        if len(text_token) > max_length:
189
            truncated = True
190
191
192
193
            text_token = text_token[:max_length]
            text_weight = text_weight[:max_length]
        tokens.append(text_token)
        weights.append(text_weight)
194
195
    if truncated:
        logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples")
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    return tokens, weights


def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, no_boseos_middle=True, chunk_length=77):
    r"""
    Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
    """
    max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
    weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
    for i in range(len(tokens)):
        tokens[i] = [bos] + tokens[i] + [eos] * (max_length - 1 - len(tokens[i]))
        if no_boseos_middle:
            weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
        else:
            w = []
            if len(weights[i]) == 0:
                w = [1.0] * weights_length
            else:
214
                for j in range(max_embeddings_multiples):
215
                    w.append(1.0)  # weight for starting token in this chunk
216
                    w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))]
217
218
219
220
221
222
223
224
                    w.append(1.0)  # weight for ending token in this chunk
                w += [1.0] * (weights_length - len(w))
            weights[i] = w[:]

    return tokens, weights


def get_unweighted_text_embeddings(
225
226
227
228
    pipe,
    text_input: np.array,
    chunk_length: int,
    no_boseos_middle: Optional[bool] = True,
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
):
    """
    When the length of tokens is a multiple of the capacity of the text encoder,
    it should be split into chunks and sent to the text encoder individually.
    """
    max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
    if max_embeddings_multiples > 1:
        text_embeddings = []
        for i in range(max_embeddings_multiples):
            # extract the i-th chunk
            text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].copy()

            # cover the head and the tail by the starting and the ending tokens
            text_input_chunk[:, 0] = text_input[0, 0]
            text_input_chunk[:, -1] = text_input[0, -1]

            text_embedding = pipe.text_encoder(input_ids=text_input_chunk)[0]

            if no_boseos_middle:
                if i == 0:
                    # discard the ending token
                    text_embedding = text_embedding[:, :-1]
                elif i == max_embeddings_multiples - 1:
                    # discard the starting token
                    text_embedding = text_embedding[:, 1:]
                else:
                    # discard both starting and ending tokens
                    text_embedding = text_embedding[:, 1:-1]

            text_embeddings.append(text_embedding)
        text_embeddings = np.concatenate(text_embeddings, axis=1)
    else:
        text_embeddings = pipe.text_encoder(input_ids=text_input)[0]
    return text_embeddings


def get_weighted_text_embeddings(
    pipe,
    prompt: Union[str, List[str]],
    uncond_prompt: Optional[Union[str, List[str]]] = None,
    max_embeddings_multiples: Optional[int] = 4,
    no_boseos_middle: Optional[bool] = False,
    skip_parsing: Optional[bool] = False,
    skip_weighting: Optional[bool] = False,
    **kwargs,
):
    r"""
    Prompts can be assigned with local weights using brackets. For example,
    prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',
Yuta Hayashibe's avatar
Yuta Hayashibe committed
278
    and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.
279

Yuta Hayashibe's avatar
Yuta Hayashibe committed
280
    Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
281
282

    Args:
283
        pipe (`OnnxStableDiffusionPipeline`):
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
            Pipe to provide access to the tokenizer and the text encoder.
        prompt (`str` or `List[str]`):
            The prompt or prompts to guide the image generation.
        uncond_prompt (`str` or `List[str]`):
            The unconditional prompt or prompts for guide the image generation. If unconditional prompt
            is provided, the embeddings of prompt and uncond_prompt are concatenated.
        max_embeddings_multiples (`int`, *optional*, defaults to `1`):
            The max multiple length of prompt embeddings compared to the max output length of text encoder.
        no_boseos_middle (`bool`, *optional*, defaults to `False`):
            If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and
            ending token in each of the chunk in the middle.
        skip_parsing (`bool`, *optional*, defaults to `False`):
            Skip the parsing of brackets.
        skip_weighting (`bool`, *optional*, defaults to `False`):
            Skip the weighting. When the parsing is skipped, it is forced True.
    """
    max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
    if isinstance(prompt, str):
        prompt = [prompt]

    if not skip_parsing:
        prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2)
        if uncond_prompt is not None:
            if isinstance(uncond_prompt, str):
                uncond_prompt = [uncond_prompt]
            uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2)
    else:
        prompt_tokens = [
            token[1:-1]
            for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True, return_tensors="np").input_ids
        ]
        prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
        if uncond_prompt is not None:
            if isinstance(uncond_prompt, str):
                uncond_prompt = [uncond_prompt]
            uncond_tokens = [
                token[1:-1]
                for token in pipe.tokenizer(
322
323
324
325
                    uncond_prompt,
                    max_length=max_length,
                    truncation=True,
                    return_tensors="np",
326
327
328
329
330
331
332
333
334
335
                ).input_ids
            ]
            uncond_weights = [[1.0] * len(token) for token in uncond_tokens]

    # round up the longest length of tokens to a multiple of (model_max_length - 2)
    max_length = max([len(token) for token in prompt_tokens])
    if uncond_prompt is not None:
        max_length = max(max_length, max([len(token) for token in uncond_tokens]))

    max_embeddings_multiples = min(
336
337
        max_embeddings_multiples,
        (max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1,
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    )
    max_embeddings_multiples = max(1, max_embeddings_multiples)
    max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2

    # pad the length of tokens and weights
    bos = pipe.tokenizer.bos_token_id
    eos = pipe.tokenizer.eos_token_id
    prompt_tokens, prompt_weights = pad_tokens_and_weights(
        prompt_tokens,
        prompt_weights,
        max_length,
        bos,
        eos,
        no_boseos_middle=no_boseos_middle,
        chunk_length=pipe.tokenizer.model_max_length,
    )
    prompt_tokens = np.array(prompt_tokens, dtype=np.int32)
    if uncond_prompt is not None:
        uncond_tokens, uncond_weights = pad_tokens_and_weights(
            uncond_tokens,
            uncond_weights,
            max_length,
            bos,
            eos,
            no_boseos_middle=no_boseos_middle,
            chunk_length=pipe.tokenizer.model_max_length,
        )
        uncond_tokens = np.array(uncond_tokens, dtype=np.int32)

    # get the embeddings
    text_embeddings = get_unweighted_text_embeddings(
369
370
371
372
        pipe,
        prompt_tokens,
        pipe.tokenizer.model_max_length,
        no_boseos_middle=no_boseos_middle,
373
374
375
376
    )
    prompt_weights = np.array(prompt_weights, dtype=text_embeddings.dtype)
    if uncond_prompt is not None:
        uncond_embeddings = get_unweighted_text_embeddings(
377
378
379
380
            pipe,
            uncond_tokens,
            pipe.tokenizer.model_max_length,
            no_boseos_middle=no_boseos_middle,
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
        )
        uncond_weights = np.array(uncond_weights, dtype=uncond_embeddings.dtype)

    # assign weights to the prompts and normalize in the sense of mean
    # TODO: should we normalize by chunk or in a whole (current implementation)?
    if (not skip_parsing) and (not skip_weighting):
        previous_mean = text_embeddings.mean(axis=(-2, -1))
        text_embeddings *= prompt_weights[:, :, None]
        text_embeddings *= (previous_mean / text_embeddings.mean(axis=(-2, -1)))[:, None, None]
        if uncond_prompt is not None:
            previous_mean = uncond_embeddings.mean(axis=(-2, -1))
            uncond_embeddings *= uncond_weights[:, :, None]
            uncond_embeddings *= (previous_mean / uncond_embeddings.mean(axis=(-2, -1)))[:, None, None]

    # For classifier free guidance, we need to do two forward passes.
    # Here we concatenate the unconditional and text embeddings into a single batch
    # to avoid doing two forward passes
    if uncond_prompt is not None:
        return text_embeddings, uncond_embeddings

    return text_embeddings


def preprocess_image(image):
    w, h = image.size
    w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
407
    image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
408
409
410
411
412
    image = np.array(image).astype(np.float32) / 255.0
    image = image[None].transpose(0, 3, 1, 2)
    return 2.0 * image - 1.0


413
def preprocess_mask(mask, scale_factor=8):
414
415
416
    mask = mask.convert("L")
    w, h = mask.size
    w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
417
    mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"])
418
419
420
421
422
423
424
    mask = np.array(mask).astype(np.float32) / 255.0
    mask = np.tile(mask, (4, 1, 1))
    mask = mask[None].transpose(0, 1, 2, 3)  # what does this step do?
    mask = 1 - mask  # repaint white, keep black
    return mask


425
class OnnxStableDiffusionLongPromptWeightingPipeline(OnnxStableDiffusionPipeline):
426
427
428
429
430
431
432
    r"""
    Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing
    weighting in prompt.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
    """
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    if version.parse(version.parse(diffusers.__version__).base_version) >= version.parse("0.9.0"):

        def __init__(
            self,
            vae_encoder: OnnxRuntimeModel,
            vae_decoder: OnnxRuntimeModel,
            text_encoder: OnnxRuntimeModel,
            tokenizer: CLIPTokenizer,
            unet: OnnxRuntimeModel,
            scheduler: SchedulerMixin,
            safety_checker: OnnxRuntimeModel,
            feature_extractor: CLIPFeatureExtractor,
            requires_safety_checker: bool = True,
        ):
            super().__init__(
                vae_encoder=vae_encoder,
                vae_decoder=vae_decoder,
                text_encoder=text_encoder,
                tokenizer=tokenizer,
                unet=unet,
                scheduler=scheduler,
                safety_checker=safety_checker,
                feature_extractor=feature_extractor,
                requires_safety_checker=requires_safety_checker,
            )
            self.__init__additional__()
459

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
    else:

        def __init__(
            self,
            vae_encoder: OnnxRuntimeModel,
            vae_decoder: OnnxRuntimeModel,
            text_encoder: OnnxRuntimeModel,
            tokenizer: CLIPTokenizer,
            unet: OnnxRuntimeModel,
            scheduler: SchedulerMixin,
            safety_checker: OnnxRuntimeModel,
            feature_extractor: CLIPFeatureExtractor,
        ):
            super().__init__(
                vae_encoder=vae_encoder,
                vae_decoder=vae_decoder,
                text_encoder=text_encoder,
                tokenizer=tokenizer,
                unet=unet,
                scheduler=scheduler,
                safety_checker=safety_checker,
                feature_extractor=feature_extractor,
            )
            self.__init__additional__()

    def __init__additional__(self):
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
        self.unet_in_channels = 4
        self.vae_scale_factor = 8

    def _encode_prompt(
        self,
        prompt,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt,
        max_embeddings_multiples,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `list(int)`):
                prompt to be encoded
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            max_embeddings_multiples (`int`, *optional*, defaults to `3`):
                The max multiple length of prompt embeddings compared to the max output length of text encoder.
        """
        batch_size = len(prompt) if isinstance(prompt, list) else 1

        if negative_prompt is None:
            negative_prompt = [""] * batch_size
        elif isinstance(negative_prompt, str):
            negative_prompt = [negative_prompt] * batch_size
        if batch_size != len(negative_prompt):
            raise ValueError(
                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                " the batch size of `prompt`."
            )

        text_embeddings, uncond_embeddings = get_weighted_text_embeddings(
            pipe=self,
            prompt=prompt,
            uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
            max_embeddings_multiples=max_embeddings_multiples,
531
532
        )

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
        text_embeddings = text_embeddings.repeat(num_images_per_prompt, 0)
        if do_classifier_free_guidance:
            uncond_embeddings = uncond_embeddings.repeat(num_images_per_prompt, 0)
            text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])

        return text_embeddings

    def check_inputs(self, prompt, height, width, strength, callback_steps):
        if not isinstance(prompt, str) and not isinstance(prompt, list):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if strength < 0 or strength > 1:
            raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")

        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

    def get_timesteps(self, num_inference_steps, strength, is_text2img):
        if is_text2img:
            return self.scheduler.timesteps, num_inference_steps
        else:
            # get the original timestep using init_timestep
            offset = self.scheduler.config.get("steps_offset", 0)
            init_timestep = int(num_inference_steps * strength) + offset
            init_timestep = min(init_timestep, num_inference_steps)

            t_start = max(num_inference_steps - init_timestep + offset, 0)
            timesteps = self.scheduler.timesteps[t_start:]
            return timesteps, num_inference_steps - t_start

    def run_safety_checker(self, image):
        if self.safety_checker is not None:
            safety_checker_input = self.feature_extractor(
                self.numpy_to_pil(image), return_tensors="np"
            ).pixel_values.astype(image.dtype)
            # There will throw an error if use safety_checker directly and batchsize>1
            images, has_nsfw_concept = [], []
            for i in range(image.shape[0]):
                image_i, has_nsfw_concept_i = self.safety_checker(
                    clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1]
                )
                images.append(image_i)
                has_nsfw_concept.append(has_nsfw_concept_i[0])
            image = np.concatenate(images)
        else:
            has_nsfw_concept = None
        return image, has_nsfw_concept

    def decode_latents(self, latents):
        latents = 1 / 0.18215 * latents
        # image = self.vae_decoder(latent_sample=latents)[0]
        # it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
        image = np.concatenate(
            [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])]
        )
        image = np.clip(image / 2 + 0.5, 0, 1)
        image = image.transpose((0, 2, 3, 1))
        return image

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def prepare_latents(self, image, timestep, batch_size, height, width, dtype, generator, latents=None):
        if image is None:
            shape = (
                batch_size,
                self.unet_in_channels,
                height // self.vae_scale_factor,
                width // self.vae_scale_factor,
            )

            if latents is None:
                latents = torch.randn(shape, generator=generator, device="cpu").numpy().astype(dtype)
            else:
                if latents.shape != shape:
                    raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")

            # scale the initial noise by the standard deviation required by the scheduler
            latents = (torch.from_numpy(latents) * self.scheduler.init_noise_sigma).numpy()
            return latents, None, None
        else:
            init_latents = self.vae_encoder(sample=image)[0]
            init_latents = 0.18215 * init_latents
            init_latents = np.concatenate([init_latents] * batch_size, axis=0)
            init_latents_orig = init_latents
            shape = init_latents.shape

            # add noise to latents using the timesteps
            noise = torch.randn(shape, generator=generator, device="cpu").numpy().astype(dtype)
            latents = self.scheduler.add_noise(
                torch.from_numpy(init_latents), torch.from_numpy(noise), timestep
            ).numpy()
            return latents, init_latents_orig, noise

649
650
651
652
653
    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]],
        negative_prompt: Optional[Union[str, List[str]]] = None,
654
        image: Union[np.ndarray, PIL.Image.Image] = None,
655
656
657
658
659
660
661
662
        mask_image: Union[np.ndarray, PIL.Image.Image] = None,
        height: int = 512,
        width: int = 512,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        strength: float = 0.8,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
663
        generator: Optional[torch.Generator] = None,
664
665
666
667
668
        latents: Optional[np.ndarray] = None,
        max_embeddings_multiples: Optional[int] = 3,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
669
        is_cancelled_callback: Optional[Callable[[], bool]] = None,
670
671
672
673
674
675
676
677
678
679
680
681
        callback_steps: Optional[int] = 1,
        **kwargs,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
682
            image (`np.ndarray` or `PIL.Image.Image`):
683
684
685
                `Image`, or tensor representing an image batch, that will be used as the starting point for the
                process.
            mask_image (`np.ndarray` or `PIL.Image.Image`):
686
                `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
                replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
                PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
                contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
            height (`int`, *optional*, defaults to 512):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to 512):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            strength (`float`, *optional*, defaults to 0.8):
704
705
                Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
                `image` will be used as a starting point, adding more noise to it the larger the `strength`. The
706
707
                number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
                noise will be maximum and the denoising process will run for the full number of iterations specified in
708
                `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
709
710
711
712
713
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
714
715
716
            generator (`torch.Generator`, *optional*):
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
            latents (`np.ndarray`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            max_embeddings_multiples (`int`, *optional*, defaults to `3`):
                The max multiple length of prompt embeddings compared to the max output length of text encoder.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
732
733
734
            is_cancelled_callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. If the function returns
                `True`, the inference will be cancelled.
735
736
737
738
739
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.

        Returns:
740
            `None` if cancelled by `is_cancelled_callback`,
741
742
743
744
745
746
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
747
        message = "Please use `image` instead of `init_image`."
748
        init_image = deprecate("init_image", "0.14.0", message, take_from=kwargs)
749
        image = init_image or image
750

751
752
753
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor
754

755
756
        # 1. Check inputs. Raise error if not correct
        self.check_inputs(prompt, height, width, strength, callback_steps)
757

758
759
        # 2. Define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
760
761
762
763
764
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

765
766
767
768
769
770
771
        # 3. Encode input prompt
        text_embeddings = self._encode_prompt(
            prompt,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            max_embeddings_multiples,
772
        )
773
774
775
776
777
778
779
780
781
782
783
784
        dtype = text_embeddings.dtype

        # 4. Preprocess image and mask
        if isinstance(image, PIL.Image.Image):
            image = preprocess_image(image)
        if image is not None:
            image = image.astype(dtype)
        if isinstance(mask_image, PIL.Image.Image):
            mask_image = preprocess_mask(mask_image, self.vae_scale_factor)
        if mask_image is not None:
            mask = mask_image.astype(dtype)
            mask = np.concatenate([mask] * batch_size * num_images_per_prompt)
785
        else:
786
            mask = None
787

788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
        # 5. set timesteps
        self.scheduler.set_timesteps(num_inference_steps)
        timestep_dtype = next(
            (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)"
        )
        timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, image is None)
        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)

        # 6. Prepare latent variables
        latents, init_latents_orig, noise = self.prepare_latents(
            image,
            latent_timestep,
            batch_size * num_images_per_prompt,
            height,
            width,
            dtype,
            generator,
            latents,
        )
808

809
810
811
812
        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 8. Denoising loop
813
814
815
816
817
818
819
820
821
822
823
824
825
        for i, t in enumerate(self.progress_bar(timesteps)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
            latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t)
            latent_model_input = latent_model_input.numpy()

            # predict the noise residual
            noise_pred = self.unet(
                sample=latent_model_input,
                timestep=np.array([t], dtype=timestep_dtype),
                encoder_hidden_states=text_embeddings,
            )
            noise_pred = noise_pred[0]
826

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            scheduler_output = self.scheduler.step(
                torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs
            )
            latents = scheduler_output.prev_sample.numpy()

            if mask is not None:
                # masking
                init_latents_proper = self.scheduler.add_noise(
                    torch.from_numpy(init_latents_orig),
                    torch.from_numpy(noise),
                    t,
                ).numpy()
                latents = (init_latents_proper * mask) + (latents * (1 - mask))

            # call the callback, if provided
            if i % callback_steps == 0:
                if callback is not None:
                    callback(i, t, latents)
                if is_cancelled_callback is not None and is_cancelled_callback():
                    return None
853

854
855
856
857
858
859
860
        # 9. Post-processing
        image = self.decode_latents(latents)

        # 10. Run safety checker
        image, has_nsfw_concept = self.run_safety_checker(image)

        # 11. Convert to PIL
861
862
863
864
        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
865
            return image, has_nsfw_concept
866
867
868
869
870
871
872
873
874
875
876
877
878

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

    def text2img(
        self,
        prompt: Union[str, List[str]],
        negative_prompt: Optional[Union[str, List[str]]] = None,
        height: int = 512,
        width: int = 512,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
879
        generator: Optional[torch.Generator] = None,
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
        latents: Optional[np.ndarray] = None,
        max_embeddings_multiples: Optional[int] = 3,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
        callback_steps: Optional[int] = 1,
        **kwargs,
    ):
        r"""
        Function for text-to-image generation.
        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            height (`int`, *optional*, defaults to 512):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to 512):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
914
915
916
            generator (`torch.Generator`, *optional*):
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
            latents (`np.ndarray`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            max_embeddings_multiples (`int`, *optional*, defaults to `3`):
                The max multiple length of prompt embeddings compared to the max output length of text encoder.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        return self.__call__(
            prompt=prompt,
            negative_prompt=negative_prompt,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            latents=latents,
            max_embeddings_multiples=max_embeddings_multiples,
            output_type=output_type,
            return_dict=return_dict,
            callback=callback,
            callback_steps=callback_steps,
            **kwargs,
        )

    def img2img(
        self,
963
        image: Union[np.ndarray, PIL.Image.Image],
964
965
966
967
968
969
970
        prompt: Union[str, List[str]],
        negative_prompt: Optional[Union[str, List[str]]] = None,
        strength: float = 0.8,
        num_inference_steps: Optional[int] = 50,
        guidance_scale: Optional[float] = 7.5,
        num_images_per_prompt: Optional[int] = 1,
        eta: Optional[float] = 0.0,
971
        generator: Optional[torch.Generator] = None,
972
973
974
975
976
977
978
979
980
981
        max_embeddings_multiples: Optional[int] = 3,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
        callback_steps: Optional[int] = 1,
        **kwargs,
    ):
        r"""
        Function for image-to-image generation.
        Args:
982
            image (`np.ndarray` or `PIL.Image.Image`):
983
984
985
986
987
988
989
990
                `Image`, or ndarray representing an image batch, that will be used as the starting point for the
                process.
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            strength (`float`, *optional*, defaults to 0.8):
991
992
                Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
                `image` will be used as a starting point, adding more noise to it the larger the `strength`. The
993
994
                number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
                noise will be maximum and the denoising process will run for the full number of iterations specified in
995
                `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference. This parameter will be modulated by `strength`.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
1010
1011
1012
            generator (`torch.Generator`, *optional*):
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
            max_embeddings_multiples (`int`, *optional*, defaults to `3`):
                The max multiple length of prompt embeddings compared to the max output length of text encoder.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        return self.__call__(
            prompt=prompt,
            negative_prompt=negative_prompt,
1037
            image=image,
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            strength=strength,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            max_embeddings_multiples=max_embeddings_multiples,
            output_type=output_type,
            return_dict=return_dict,
            callback=callback,
            callback_steps=callback_steps,
            **kwargs,
        )

    def inpaint(
        self,
1054
        image: Union[np.ndarray, PIL.Image.Image],
1055
1056
1057
1058
1059
1060
1061
1062
        mask_image: Union[np.ndarray, PIL.Image.Image],
        prompt: Union[str, List[str]],
        negative_prompt: Optional[Union[str, List[str]]] = None,
        strength: float = 0.8,
        num_inference_steps: Optional[int] = 50,
        guidance_scale: Optional[float] = 7.5,
        num_images_per_prompt: Optional[int] = 1,
        eta: Optional[float] = 0.0,
1063
        generator: Optional[torch.Generator] = None,
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
        max_embeddings_multiples: Optional[int] = 3,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
        callback_steps: Optional[int] = 1,
        **kwargs,
    ):
        r"""
        Function for inpaint.
        Args:
1074
            image (`np.ndarray` or `PIL.Image.Image`):
1075
1076
1077
                `Image`, or tensor representing an image batch, that will be used as the starting point for the
                process. This is the image whose masked region will be inpainted.
            mask_image (`np.ndarray` or `PIL.Image.Image`):
1078
                `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
                replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
                PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
                contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            strength (`float`, *optional*, defaults to 0.8):
                Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength`
                is 1, the denoising process will be run on the masked area for the full number of iterations specified
1090
                in `num_inference_steps`. `image` will be used as a reference for the masked area, adding more
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
                noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
                the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
1106
1107
1108
            generator (`torch.Generator`, *optional*):
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
            max_embeddings_multiples (`int`, *optional*, defaults to `3`):
                The max multiple length of prompt embeddings compared to the max output length of text encoder.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        return self.__call__(
            prompt=prompt,
            negative_prompt=negative_prompt,
1133
            image=image,
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
            mask_image=mask_image,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            strength=strength,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            max_embeddings_multiples=max_embeddings_multiples,
            output_type=output_type,
            return_dict=return_dict,
            callback=callback,
            callback_steps=callback_steps,
            **kwargs,
        )