pipeline_repaint.py 9.7 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 ETH Zurich Computer Vision Lab and The HuggingFace Team. All rights reserved.
Revist's avatar
Revist committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


16
import warnings
17
from typing import List, Optional, Tuple, Union
Revist's avatar
Revist committed
18
19
20

import numpy as np
import PIL
21
import torch
Revist's avatar
Revist committed
22
23
24

from ...models import UNet2DModel
from ...schedulers import RePaintScheduler
25
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
26
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
Revist's avatar
Revist committed
27
28


29
30
31
32
33
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess
def _preprocess_image(image: Union[List, PIL.Image.Image, torch.Tensor]):
34
35
36
37
38
    warnings.warn(
        "The preprocess method is deprecated and will be removed in a future version. Please"
        " use VaeImageProcessor.preprocess instead",
        FutureWarning,
    )
39
40
41
42
43
44
45
    if isinstance(image, torch.Tensor):
        return image
    elif isinstance(image, PIL.Image.Image):
        image = [image]

    if isinstance(image[0], PIL.Image.Image):
        w, h = image[0].size
46
        w, h = (x - x % 8 for x in (w, h))  # resize to integer multiple of 8
47
48
49
50
51
52
53
54
55

        image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
        image = np.concatenate(image, axis=0)
        image = np.array(image).astype(np.float32) / 255.0
        image = image.transpose(0, 3, 1, 2)
        image = 2.0 * image - 1.0
        image = torch.from_numpy(image)
    elif isinstance(image[0], torch.Tensor):
        image = torch.cat(image, dim=0)
Revist's avatar
Revist committed
56
57
58
    return image


59
60
61
62
63
64
65
66
def _preprocess_mask(mask: Union[List, PIL.Image.Image, torch.Tensor]):
    if isinstance(mask, torch.Tensor):
        return mask
    elif isinstance(mask, PIL.Image.Image):
        mask = [mask]

    if isinstance(mask[0], PIL.Image.Image):
        w, h = mask[0].size
67
        w, h = (x - x % 32 for x in (w, h))  # resize to integer multiple of 32
68
69
70
71
72
73
74
75
        mask = [np.array(m.convert("L").resize((w, h), resample=PIL_INTERPOLATION["nearest"]))[None, :] for m in mask]
        mask = np.concatenate(mask, axis=0)
        mask = mask.astype(np.float32) / 255.0
        mask[mask < 0.5] = 0
        mask[mask >= 0.5] = 1
        mask = torch.from_numpy(mask)
    elif isinstance(mask[0], torch.Tensor):
        mask = torch.cat(mask, dim=0)
Revist's avatar
Revist committed
76
77
78
79
    return mask


class RePaintPipeline(DiffusionPipeline):
80
81
82
83
84
85
86
87
88
89
90
91
92
    r"""
    Pipeline for image inpainting using RePaint.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    Parameters:
        unet ([`UNet2DModel`]):
            A `UNet2DModel` to denoise the encoded image latents.
        scheduler ([`RePaintScheduler`]):
            A `RePaintScheduler` to be used in combination with `unet` to denoise the encoded image.
    """

Revist's avatar
Revist committed
93
94
95
96
97
98
99
100
101
102
    unet: UNet2DModel
    scheduler: RePaintScheduler

    def __init__(self, unet, scheduler):
        super().__init__()
        self.register_modules(unet=unet, scheduler=scheduler)

    @torch.no_grad()
    def __call__(
        self,
103
104
        image: Union[torch.Tensor, PIL.Image.Image],
        mask_image: Union[torch.Tensor, PIL.Image.Image],
Revist's avatar
Revist committed
105
106
107
108
        num_inference_steps: int = 250,
        eta: float = 0.0,
        jump_length: int = 10,
        jump_n_sample: int = 10,
109
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
Revist's avatar
Revist committed
110
111
112
113
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
    ) -> Union[ImagePipelineOutput, Tuple]:
        r"""
114
115
        The call function to the pipeline for generation.

Revist's avatar
Revist committed
116
        Args:
117
            image (`torch.FloatTensor` or `PIL.Image.Image`):
Revist's avatar
Revist committed
118
119
                The original image to inpaint on.
            mask_image (`torch.FloatTensor` or `PIL.Image.Image`):
120
                The mask_image where 0.0 define which part of the original image to inpaint.
Revist's avatar
Revist committed
121
122
123
124
            num_inference_steps (`int`, *optional*, defaults to 1000):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            eta (`float`):
125
126
                The weight of the added noise in a diffusion step. Its value is between 0.0 and 1.0; 0.0 corresponds to
                DDIM and 1.0 is the DDPM scheduler.
Revist's avatar
Revist committed
127
128
            jump_length (`int`, *optional*, defaults to 10):
                The number of steps taken forward in time before going backward in time for a single jump ("j" in
129
                RePaint paper). Take a look at Figure 9 and 10 in the [paper](https://arxiv.org/pdf/2201.09865.pdf).
Revist's avatar
Revist committed
130
            jump_n_sample (`int`, *optional*, defaults to 10):
131
132
                The number of times to make a forward time jump for a given chosen time sample. Take a look at Figure 9
                and 10 in the [paper](https://arxiv.org/pdf/2201.09865.pdf).
Revist's avatar
Revist committed
133
            generator (`torch.Generator`, *optional*):
134
135
136
137
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            output_type (`str`, `optional`, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
Revist's avatar
Revist committed
138
            return_dict (`bool`, *optional*, defaults to `True`):
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
                Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple.

        Example:

        ```py
        >>> from io import BytesIO
        >>> import torch
        >>> import PIL
        >>> import requests
        >>> from diffusers import RePaintPipeline, RePaintScheduler


        >>> def download_image(url):
        ...     response = requests.get(url)
        ...     return PIL.Image.open(BytesIO(response.content)).convert("RGB")


        >>> img_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/celeba_hq_256.png"
        >>> mask_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png"

        >>> # Load the original image and the mask as PIL images
        >>> original_image = download_image(img_url).resize((256, 256))
        >>> mask_image = download_image(mask_url).resize((256, 256))

        >>> # Load the RePaint scheduler and pipeline based on a pretrained DDPM model
        >>> scheduler = RePaintScheduler.from_pretrained("google/ddpm-ema-celebahq-256")
        >>> pipe = RePaintPipeline.from_pretrained("google/ddpm-ema-celebahq-256", scheduler=scheduler)
        >>> pipe = pipe.to("cuda")

        >>> generator = torch.Generator(device="cuda").manual_seed(0)
        >>> output = pipe(
        ...     image=original_image,
        ...     mask_image=mask_image,
        ...     num_inference_steps=250,
        ...     eta=0.0,
        ...     jump_length=10,
        ...     jump_n_sample=10,
        ...     generator=generator,
        ... )
        >>> inpainted_image = output.images[0]
        ```
Revist's avatar
Revist committed
180
181

        Returns:
182
183
184
            [`~pipelines.ImagePipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
                returned where the first element is a list with the generated images.
Revist's avatar
Revist committed
185
186
        """

187
        original_image = image
188
189

        original_image = _preprocess_image(original_image)
190
        original_image = original_image.to(device=self._execution_device, dtype=self.unet.dtype)
191
        mask_image = _preprocess_mask(mask_image)
192
        mask_image = mask_image.to(device=self._execution_device, dtype=self.unet.dtype)
Revist's avatar
Revist committed
193

194
195
        batch_size = original_image.shape[0]

Revist's avatar
Revist committed
196
        # sample gaussian noise to begin the loop
197
198
199
200
201
202
203
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        image_shape = original_image.shape
204
        image = randn_tensor(image_shape, generator=generator, device=self._execution_device, dtype=self.unet.dtype)
Revist's avatar
Revist committed
205
206

        # set step values
207
        self.scheduler.set_timesteps(num_inference_steps, jump_length, jump_n_sample, self._execution_device)
Revist's avatar
Revist committed
208
209
210
        self.scheduler.eta = eta

        t_last = self.scheduler.timesteps[0] + 1
211
        generator = generator[0] if isinstance(generator, list) else generator
212
        for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
Revist's avatar
Revist committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
            if t < t_last:
                # predict the noise residual
                model_output = self.unet(image, t).sample
                # compute previous image: x_t -> x_t-1
                image = self.scheduler.step(model_output, t, image, original_image, mask_image, generator).prev_sample

            else:
                # compute the reverse: x_t-1 -> x_t
                image = self.scheduler.undo_step(image, t_last, generator)
            t_last = t

        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)