"examples/pytorch/vscode:/vscode.git/clone" did not exist on "2b77ad41e103f875ec1580f695f29de6dd362b88"
scheduling_utils.py 2.75 KB
Newer Older
Patrick von Platen's avatar
up  
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Patrick von Platen's avatar
Patrick von Platen committed
14
import numpy as np
Patrick von Platen's avatar
up  
Patrick von Platen committed
15
16
17
import torch


Patrick von Platen's avatar
Patrick von Platen committed
18
19
20
SCHEDULER_CONFIG_NAME = "scheduler_config.json"


Patrick von Platen's avatar
up  
Patrick von Platen committed
21
def linear_beta_schedule(timesteps, beta_start, beta_end):
Patrick von Platen's avatar
Patrick von Platen committed
22
    return np.linspace(beta_start, beta_end, timesteps, dtype=np.float32)
Patrick von Platen's avatar
up  
Patrick von Platen committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41


def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function,
    which defines the cumulative product of (1-beta) over time from t = [0,1].

    :param num_diffusion_timesteps: the number of betas to produce.
    :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that
                      part of the diffusion process.
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
Patrick von Platen's avatar
Patrick von Platen committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    return np.array(betas, dtype=np.float32)


class SchedulerMixin:

    config_name = SCHEDULER_CONFIG_NAME

    def set_format(self, tensor_format="pt"):
        self.tensor_format = tensor_format
        if tensor_format == "pt":
            for key, value in vars(self).items():
                if isinstance(value, np.ndarray):
                    setattr(self, key, torch.from_numpy(value))

        return self

    def clip(self, tensor, min_value=None, max_value=None):
        tensor_format = getattr(self, "tensor_format", "pt")

        if tensor_format == "np":
            return np.clip(tensor, min_value, max_value)
        elif tensor_format == "pt":
            return torch.clamp(tensor, min_value, max_value)

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
67
68
69
70
71
72
73
74
75
76

    def log(self, tensor):
        tensor_format = getattr(self, "tensor_format", "pt")

        if tensor_format == "np":
            return np.log(tensor)
        elif tensor_format == "pt":
            return torch.log(tensor)

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")