scheduling_ddpm.py 6.25 KB
Newer Older
Patrick von Platen's avatar
improve  
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
anton-l's avatar
anton-l committed
14
import math
Patrick von Platen's avatar
Patrick von Platen committed
15

Patrick von Platen's avatar
Patrick von Platen committed
16
import numpy as np
Patrick von Platen's avatar
improve  
Patrick von Platen committed
17

Patrick von Platen's avatar
Patrick von Platen committed
18
from ..configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
19
from .scheduling_utils import SchedulerMixin, betas_for_alpha_bar, linear_beta_schedule
Patrick von Platen's avatar
improve  
Patrick von Platen committed
20
21


Patrick von Platen's avatar
Patrick von Platen committed
22
class DDPMScheduler(SchedulerMixin, ConfigMixin):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23
24
25
26
27
28
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
29
30
        trained_betas=None,
        timestep_values=None,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
31
        variance_type="fixed_small",
Patrick von Platen's avatar
Patrick von Platen committed
32
        clip_sample=True,
Patrick von Platen's avatar
Patrick von Platen committed
33
        tensor_format="np",
Patrick von Platen's avatar
improve  
Patrick von Platen committed
34
35
    ):
        super().__init__()
36
        self.register_to_config(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
37
38
39
40
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
41
42
            trained_betas=trained_betas,
            timestep_values=timestep_values,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
43
            variance_type=variance_type,
Patrick von Platen's avatar
Patrick von Platen committed
44
            clip_sample=clip_sample,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
45
46
        )

47
48
49
        if trained_betas is not None:
            self.betas = np.asarray(trained_betas)
        elif beta_schedule == "linear":
Patrick von Platen's avatar
Patrick von Platen committed
50
            self.betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
anton-l's avatar
anton-l committed
51
52
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
Patrick von Platen's avatar
Patrick von Platen committed
53
            self.betas = betas_for_alpha_bar(
anton-l's avatar
anton-l committed
54
55
56
                timesteps,
                lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
            )
Patrick von Platen's avatar
improve  
Patrick von Platen committed
57
58
59
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

    #        self.register_buffer("betas", betas.to(torch.float32))
    #        self.register_buffer("alphas", alphas.to(torch.float32))
    #        self.register_buffer("alphas_cumprod", alphas_cumprod.to(torch.float32))

    #        alphas_cumprod_prev = torch.nn.functional.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
    # TODO(PVP) - check how much of these is actually necessary!
    # LDM only uses "fixed_small"; glide seems to use a weird mix of the two, ...
    # https://github.com/openai/glide-text2im/blob/69b530740eb6cef69442d6180579ef5ba9ef063e/glide_text2im/gaussian_diffusion.py#L246
    #        variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
    #        if variance_type == "fixed_small":
    #            log_variance = torch.log(variance.clamp(min=1e-20))
    #        elif variance_type == "fixed_large":
    #            log_variance = torch.log(torch.cat([variance[1:2], betas[1:]], dim=0))
    #
    #
    #        self.register_buffer("log_variance", log_variance.to(torch.float32))
82
83
    def get_timestep_values(self):
        return self.config.timestep_values
Patrick von Platen's avatar
improve  
Patrick von Platen committed
84
85
86
87
88
89
90
91
92

    def get_alpha(self, time_step):
        return self.alphas[time_step]

    def get_beta(self, time_step):
        return self.betas[time_step]

    def get_alpha_prod(self, time_step):
        if time_step < 0:
Patrick von Platen's avatar
Patrick von Platen committed
93
            return self.one
Patrick von Platen's avatar
improve  
Patrick von Platen committed
94
95
        return self.alphas_cumprod[time_step]

Patrick von Platen's avatar
Patrick von Platen committed
96
97
98
99
100
    def get_variance(self, t):
        alpha_prod_t = self.get_alpha_prod(t)
        alpha_prod_t_prev = self.get_alpha_prod(t - 1)

        # For t > 0, compute predicted variance βt (see formala (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
101
102
        # and sample from it to get previous sample
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variane to pred_sample
Patrick von Platen's avatar
Patrick von Platen committed
103
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.get_beta(t)
Patrick von Platen's avatar
Patrick von Platen committed
104
105

        # hacks - were probs added for training stability
106
        if self.config.variance_type == "fixed_small":
Patrick von Platen's avatar
Patrick von Platen committed
107
            variance = self.clip(variance, min_value=1e-20)
108
109
110
        # for rl-diffuser https://arxiv.org/abs/2205.09991
        elif self.config.variance_type == "fixed_small_log":
            variance = self.log(self.clip(variance, min_value=1e-20))
111
        elif self.config.variance_type == "fixed_large":
Patrick von Platen's avatar
Patrick von Platen committed
112
            variance = self.get_beta(t)
Patrick von Platen's avatar
Patrick von Platen committed
113
114
115

        return variance

116
    def step(self, residual, sample, t, predict_epsilon=True):
Patrick von Platen's avatar
Patrick von Platen committed
117
118
119
120
121
122
        # 1. compute alphas, betas
        alpha_prod_t = self.get_alpha_prod(t)
        alpha_prod_t_prev = self.get_alpha_prod(t - 1)
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

123
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
124
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
125
126
127
128
        if predict_epsilon:
            pred_original_sample = (sample - beta_prod_t ** (0.5) * residual) / alpha_prod_t ** (0.5)
        else:
            pred_original_sample = residual
Patrick von Platen's avatar
Patrick von Platen committed
129
130

        # 3. Clip "predicted x_0"
131
        if self.config.clip_sample:
132
            pred_original_sample = self.clip(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
133

134
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
135
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
136
137
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.get_beta(t)) / beta_prod_t
        current_sample_coeff = self.get_alpha(t) ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
138

139
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
140
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
141
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
142

143
        return pred_prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
144

145
    def forward_step(self, original_sample, noise, t):
anton-l's avatar
anton-l committed
146
147
        sqrt_alpha_prod = self.get_alpha_prod(t) ** 0.5
        sqrt_one_minus_alpha_prod = (1 - self.get_alpha_prod(t)) ** 0.5
148
149
        noisy_sample = sqrt_alpha_prod * original_sample + sqrt_one_minus_alpha_prod * noise
        return noisy_sample
anton-l's avatar
anton-l committed
150

Patrick von Platen's avatar
improve  
Patrick von Platen committed
151
    def __len__(self):
152
        return self.config.timesteps