unet.py 11.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.

# helpers functions

import copy
import math
from pathlib import Path

import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23
from torch import nn
24
25
26
27
from torch.cuda.amp import GradScaler, autocast
from torch.optim import Adam
from torch.utils import data

Patrick von Platen's avatar
improve  
Patrick von Platen committed
28
from PIL import Image
29
30
from tqdm import tqdm

Patrick von Platen's avatar
Patrick von Platen committed
31
from ..configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
32
from ..modeling_utils import ModelMixin
33
34


Patrick von Platen's avatar
improve  
Patrick von Platen committed
35
36
37
38
39
40
41
42
43
def get_timestep_embedding(timesteps, embedding_dim):
    """
    This matches the implementation in Denoising Diffusion Probabilistic Models:
    From Fairseq.
    Build sinusoidal embeddings.
    This matches the implementation in tensor2tensor, but differs slightly
    from the description in Section 3.5 of "Attention Is All You Need".
    """
    assert len(timesteps.shape) == 1
44

Patrick von Platen's avatar
improve  
Patrick von Platen committed
45
46
47
48
49
50
51
52
53
    half_dim = embedding_dim // 2
    emb = math.log(10000) / (half_dim - 1)
    emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
    emb = emb.to(device=timesteps.device)
    emb = timesteps.float()[:, None] * emb[None, :]
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
    if embedding_dim % 2 == 1:  # zero pad
        emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
    return emb
54
55


Patrick von Platen's avatar
improve  
Patrick von Platen committed
56
57
58
def nonlinearity(x):
    # swish
    return x * torch.sigmoid(x)
59
60


Patrick von Platen's avatar
improve  
Patrick von Platen committed
61
62
def Normalize(in_channels):
    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
63
64


Patrick von Platen's avatar
improve  
Patrick von Platen committed
65
66
class Upsample(nn.Module):
    def __init__(self, in_channels, with_conv):
67
        super().__init__()
Patrick von Platen's avatar
improve  
Patrick von Platen committed
68
69
70
        self.with_conv = with_conv
        if self.with_conv:
            self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
71
72

    def forward(self, x):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
73
74
75
76
        x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
        if self.with_conv:
            x = self.conv(x)
        return x
77
78


Patrick von Platen's avatar
improve  
Patrick von Platen committed
79
80
class Downsample(nn.Module):
    def __init__(self, in_channels, with_conv):
81
        super().__init__()
Patrick von Platen's avatar
improve  
Patrick von Platen committed
82
83
84
85
        self.with_conv = with_conv
        if self.with_conv:
            # no asymmetric padding in torch conv, must do it ourselves
            self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
86
87

    def forward(self, x):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
88
89
90
91
92
93
        if self.with_conv:
            pad = (0, 1, 0, 1)
            x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
            x = self.conv(x)
        else:
            x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
94
95
96
97
        return x


class ResnetBlock(nn.Module):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
98
    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
99
        super().__init__()
Patrick von Platen's avatar
improve  
Patrick von Platen committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut

        self.norm1 = Normalize(in_channels)
        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
        self.norm2 = Normalize(out_channels)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
            else:
                self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, x, temb):
        h = x
        h = self.norm1(h)
        h = nonlinearity(h)
        h = self.conv1(h)

        h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]

        h = self.norm2(h)
        h = nonlinearity(h)
        h = self.dropout(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)

        return x + h


class AttnBlock(nn.Module):
    def __init__(self, in_channels):
141
        super().__init__()
Patrick von Platen's avatar
improve  
Patrick von Platen committed
142
        self.in_channels = in_channels
143

Patrick von Platen's avatar
improve  
Patrick von Platen committed
144
145
146
147
148
        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
        self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
        self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
        self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
149
150

    def forward(self, x):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
151
152
153
154
155
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)
156

Patrick von Platen's avatar
improve  
Patrick von Platen committed
157
158
159
160
161
162
163
164
        # compute attention
        b, c, h, w = q.shape
        q = q.reshape(b, c, h * w)
        q = q.permute(0, 2, 1)  # b,hw,c
        k = k.reshape(b, c, h * w)  # b,c,hw
        w_ = torch.bmm(q, k)  # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
        w_ = w_ * (int(c) ** (-0.5))
        w_ = torch.nn.functional.softmax(w_, dim=2)
165

Patrick von Platen's avatar
improve  
Patrick von Platen committed
166
167
168
169
170
        # attend to values
        v = v.reshape(b, c, h * w)
        w_ = w_.permute(0, 2, 1)  # b,hw,hw (first hw of k, second of q)
        h_ = torch.bmm(v, w_)  # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
        h_ = h_.reshape(b, c, h, w)
171

Patrick von Platen's avatar
improve  
Patrick von Platen committed
172
        h_ = self.proj_out(h_)
173

Patrick von Platen's avatar
improve  
Patrick von Platen committed
174
        return x + h_
175
176


Patrick von Platen's avatar
Patrick von Platen committed
177
class UNetModel(ModelMixin, ConfigMixin):
178
179
    def __init__(
        self,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
180
181
182
183
184
185
186
187
188
        ch=128,
        out_ch=3,
        ch_mult=(1, 1, 2, 2, 4, 4),
        num_res_blocks=2,
        attn_resolutions=(16,),
        dropout=0.0,
        resamp_with_conv=True,
        in_channels=3,
        resolution=256,
189
190
    ):
        super().__init__()
191
        self.register_to_config(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
            ch=ch,
            out_ch=out_ch,
            ch_mult=ch_mult,
            num_res_blocks=num_res_blocks,
            attn_resolutions=attn_resolutions,
            dropout=dropout,
            resamp_with_conv=resamp_with_conv,
            in_channels=in_channels,
            resolution=resolution,
        )
        ch_mult = tuple(ch_mult)
        self.ch = ch
        self.temb_ch = self.ch * 4
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        # timestep embedding
        self.temb = nn.Module()
        self.temb.dense = nn.ModuleList(
            [
                torch.nn.Linear(self.ch, self.temb_ch),
                torch.nn.Linear(self.temb_ch, self.temb_ch),
            ]
217
        )
218

Patrick von Platen's avatar
improve  
Patrick von Platen committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        # downsampling
        self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)

        curr_res = resolution
        in_ch_mult = (1,) + ch_mult
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch * in_ch_mult[i_level]
            block_out = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(
                    ResnetBlock(
                        in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
                    )
235
                )
Patrick von Platen's avatar
improve  
Patrick von Platen committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(AttnBlock(block_in))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions - 1:
                down.downsample = Downsample(block_in, resamp_with_conv)
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(
            in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
        )
        self.mid.attn_1 = AttnBlock(block_in)
        self.mid.block_2 = ResnetBlock(
            in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
        )
256

Patrick von Platen's avatar
improve  
Patrick von Platen committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch * ch_mult[i_level]
            skip_in = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks + 1):
                if i_block == self.num_res_blocks:
                    skip_in = ch * in_ch_mult[i_level]
                block.append(
                    ResnetBlock(
                        in_channels=block_in + skip_in,
                        out_channels=block_out,
                        temb_channels=self.temb_ch,
                        dropout=dropout,
                    )
                )
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(AttnBlock(block_in))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample(block_in, resamp_with_conv)
                curr_res = curr_res * 2
            self.up.insert(0, up)  # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)

patil-suraj's avatar
patil-suraj committed
290
    def forward(self, x, timesteps):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
291
292
        assert x.shape[2] == x.shape[3] == self.resolution

patil-suraj's avatar
patil-suraj committed
293
294
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=x.device)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
295
296

        # timestep embedding
patil-suraj's avatar
patil-suraj committed
297
        temb = get_timestep_embedding(timesteps, self.ch)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
        temb = self.temb.dense[0](temb)
        temb = nonlinearity(temb)
        temb = self.temb.dense[1](temb)

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions - 1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks + 1):
                h = self.up[i_level].block[i_block](torch.cat([h, hs.pop()], dim=1), temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h