train_unconditional.py 14.1 KB
Newer Older
anton-l's avatar
anton-l committed
1
import argparse
2
import math
anton-l's avatar
anton-l committed
3
import os
4
5
from pathlib import Path
from typing import Optional
anton-l's avatar
anton-l committed
6
7
8
9

import torch
import torch.nn.functional as F

10
from accelerate import Accelerator
11
from accelerate.logging import get_logger
anton-l's avatar
anton-l committed
12
from datasets import load_dataset
anton-l's avatar
anton-l committed
13
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
14
from diffusers.optimization import get_scheduler
anton-l's avatar
anton-l committed
15
from diffusers.training_utils import EMAModel
16
from huggingface_hub import HfFolder, Repository, whoami
anton-l's avatar
anton-l committed
17
from torchvision.transforms import (
Patrick von Platen's avatar
Patrick von Platen committed
18
    CenterCrop,
anton-l's avatar
anton-l committed
19
20
    Compose,
    InterpolationMode,
anton-l's avatar
anton-l committed
21
    Normalize,
anton-l's avatar
anton-l committed
22
23
24
25
    RandomHorizontalFlip,
    Resize,
    ToTensor,
)
anton-l's avatar
anton-l committed
26
from tqdm.auto import tqdm
anton-l's avatar
anton-l committed
27
28


29
logger = get_logger(__name__)
anton-l's avatar
anton-l committed
30
31


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that HF Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="ddpm-model-64",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--overwrite_output_dir", action="store_true")
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=64,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
86
87
88
89
90
91
92
93
94
95
        "--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main"
            " process."
        ),
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    )
    parser.add_argument("--num_epochs", type=int, default=100)
    parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.")
    parser.add_argument(
        "--save_model_epochs", type=int, default=10, help="How often to save the model during training."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="cosine",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument(
        "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer."
    )
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
    parser.add_argument(
        "--use_ema",
        action="store_true",
        default=True,
        help="Whether to use Exponential Moving Average for the final model weights.",
    )
    parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
    parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
    parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("You must specify either a dataset name from the hub or a train data directory.")

    return args


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


anton-l's avatar
anton-l committed
195
def main(args):
196
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
197
    accelerator = Accelerator(
198
        gradient_accumulation_steps=args.gradient_accumulation_steps,
199
200
201
202
        mixed_precision=args.mixed_precision,
        log_with="tensorboard",
        logging_dir=logging_dir,
    )
anton-l's avatar
anton-l committed
203

anton-l's avatar
anton-l committed
204
205
    model = UNet2DModel(
        sample_size=args.resolution,
206
207
        in_channels=3,
        out_channels=3,
anton-l's avatar
anton-l committed
208
209
210
211
212
213
214
215
216
        layers_per_block=2,
        block_out_channels=(128, 128, 256, 256, 512, 512),
        down_block_types=(
            "DownBlock2D",
            "DownBlock2D",
            "DownBlock2D",
            "DownBlock2D",
            "AttnDownBlock2D",
            "DownBlock2D",
217
        ),
anton-l's avatar
anton-l committed
218
219
220
221
222
223
224
        up_block_types=(
            "UpBlock2D",
            "AttnUpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
225
        ),
anton-l's avatar
anton-l committed
226
    )
227
    noise_scheduler = DDPMScheduler(num_train_timesteps=1000)
228
229
230
231
232
233
234
    optimizer = torch.optim.AdamW(
        model.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )
anton-l's avatar
anton-l committed
235
236
237

    augmentations = Compose(
        [
anton-l's avatar
anton-l committed
238
            Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
anton-l's avatar
anton-l committed
239
            CenterCrop(args.resolution),
anton-l's avatar
anton-l committed
240
241
            RandomHorizontalFlip(),
            ToTensor(),
anton-l's avatar
anton-l committed
242
            Normalize([0.5], [0.5]),
anton-l's avatar
anton-l committed
243
244
        ]
    )
245
246
247
248
249
250
251
252
253
254

    if args.dataset_name is not None:
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
            split="train",
        )
    else:
        dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
anton-l's avatar
anton-l committed
255
256
257
258
259
260

    def transforms(examples):
        images = [augmentations(image.convert("RGB")) for image in examples["image"]]
        return {"input": images}

    dataset.set_transform(transforms)
261
262
263
    train_dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
    )
anton-l's avatar
anton-l committed
264

anton-l's avatar
anton-l committed
265
    lr_scheduler = get_scheduler(
266
        args.lr_scheduler,
anton-l's avatar
anton-l committed
267
        optimizer=optimizer,
268
        num_warmup_steps=args.lr_warmup_steps,
anton-l's avatar
anton-l committed
269
        num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps,
anton-l's avatar
anton-l committed
270
271
272
273
274
275
    )

    model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, lr_scheduler
    )

276
277
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)

278
    ema_model = EMAModel(model, inv_gamma=args.ema_inv_gamma, power=args.ema_power, max_value=args.ema_max_decay)
anton-l's avatar
anton-l committed
279

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
anton-l's avatar
anton-l committed
296

297
298
299
300
    if accelerator.is_main_process:
        run = os.path.split(__file__)[-1].split(".")[0]
        accelerator.init_trackers(run)

anton-l's avatar
anton-l committed
301
    global_step = 0
anton-l's avatar
anton-l committed
302
    for epoch in range(args.num_epochs):
anton-l's avatar
anton-l committed
303
        model.train()
304
        progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
305
306
307
        progress_bar.set_description(f"Epoch {epoch}")
        for step, batch in enumerate(train_dataloader):
            clean_images = batch["input"]
308
309
            # Sample noise that we'll add to the images
            noise = torch.randn(clean_images.shape).to(clean_images.device)
310
            bsz = clean_images.shape[0]
311
312
            # Sample a random timestep for each image
            timesteps = torch.randint(
313
                0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
314
            ).long()
315

316
            # Add noise to the clean images according to the noise magnitude at each timestep
317
            # (this is the forward diffusion process)
318
319
320
321
            noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)

            with accelerator.accumulate(model):
                # Predict the noise residual
322
                noise_pred = model(noisy_images, timesteps).sample
323
                loss = F.mse_loss(noise_pred, noise)
324
                accelerator.backward(loss)
325

326
327
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), 1.0)
328
329
                optimizer.step()
                lr_scheduler.step()
330
331
                if args.use_ema:
                    ema_model.step(model)
332
                optimizer.zero_grad()
333

334
335
336
337
338
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

339
340
341
342
343
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
            if args.use_ema:
                logs["ema_decay"] = ema_model.decay
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
344
        progress_bar.close()
anton-l's avatar
anton-l committed
345

anton-l's avatar
anton-l committed
346
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
347

anton-l's avatar
anton-l committed
348
        # Generate sample images for visual inspection
anton-l's avatar
anton-l committed
349
        if accelerator.is_main_process:
anton-l's avatar
anton-l committed
350
            if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
351
352
353
                pipeline = DDPMPipeline(
                    unet=accelerator.unwrap_model(ema_model.averaged_model if args.use_ema else model),
                    scheduler=noise_scheduler,
anton-l's avatar
anton-l committed
354
                )
anton-l's avatar
anton-l committed
355
356

                generator = torch.manual_seed(0)
anton-l's avatar
anton-l committed
357
                # run pipeline in inference (sample random noise and denoise)
358
                images = pipeline(generator=generator, batch_size=args.eval_batch_size, output_type="numpy").images
anton-l's avatar
anton-l committed
359

anton-l's avatar
anton-l committed
360
361
362
363
364
                # denormalize the images and save to tensorboard
                images_processed = (images * 255).round().astype("uint8")
                accelerator.trackers[0].writer.add_images(
                    "test_samples", images_processed.transpose(0, 3, 1, 2), epoch
                )
anton-l's avatar
anton-l committed
365

366
367
            if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
                # save the model
368
                pipeline.save_pretrained(args.output_dir)
369
                if args.push_to_hub:
370
                    repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=False)
anton-l's avatar
anton-l committed
371
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
372

373
374
    accelerator.end_training()

anton-l's avatar
anton-l committed
375
376

if __name__ == "__main__":
377
    args = parse_args()
anton-l's avatar
anton-l committed
378
    main(args)