README.md 16.8 KB
Newer Older
1
2
# Community Examples

Patrick von Platen's avatar
Patrick von Platen committed
3
4
> **For more information about community pipelines, please have a look at [this issue](https://github.com/huggingface/diffusers/issues/841).**

5
**Community** examples consist of both inference and training examples that have been added by the community.
6
7
Please have a look at the following table to get an overview of all community examples. Click on the **Code Example** to get a copy-and-paste ready code example that you can try out.
If a community doesn't work as expected, please open an issue and ping the author on it.
8

9
10
11
12
13
14
15
| Example                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Code Example                                                      | Colab                                                                                                                                                                                                              |                                                     Author |
|:---------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------:|
| CLIP Guided Stable Diffusion           | Doing CLIP guidance for text to image generation with Stable Diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                   | [CLIP Guided Stable Diffusion](#clip-guided-stable-diffusion)     | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/CLIP_Guided_Stable_diffusion_with_diffusers.ipynb) |             [Suraj Patil](https://github.com/patil-suraj/) | 
| One Step U-Net (Dummy)                 | Example showcasing of how to use Community Pipelines (see https://github.com/huggingface/diffusers/issues/841)                                                                                                                                                                                                                                                                                                                                                                                           | [One Step U-Net](#one-step-unet)                                  | -                                                                                                                                                                                                                  | [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Stable Diffusion Interpolation         | Interpolate the latent space of Stable Diffusion between different prompts/seeds                                                                                                                                                                                                                                                                                                                                                                                                                         | [Stable Diffusion Interpolation](#stable-diffusion-interpolation) | -                                                                                                                                                                                                                  |                    [Nate Raw](https://github.com/nateraw/) |
| Stable Diffusion Mega                  | **One** Stable Diffusion Pipeline with all functionalities of [Text2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py), [Image2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py) and [Inpainting](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py) | [Stable Diffusion Mega](#stable-diffusion-mega)                   | -                                                                                                                                                                                                                  | [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Long Prompt Weighting Stable Diffusion | **One** Stable Diffusion Pipeline without tokens length limit, and support parsing weighting in prompt.                                                                                                                                                                                                                                                                                                                                                                                                  | [Long Prompt Weighting Stable Diffusion](#long-prompt-weighting-stable-diffusion)                                                                 | -                                                                                                                                                                                                                  |                        [SkyTNT](https://github.com/SkyTNT) |
16
| Speech to Image                        | Using automatic-speech-recognition to transcribe text and Stable Diffusion to generate images                                                                                                                                                                                                                                                                                                                                                                                                            | [Speech to Image](#speech-to-image)                               | -                                                                                                                                                                                                                  | [Mikail Duzenli](https://github.com/MikailINTech)
Patrick von Platen's avatar
Patrick von Platen committed
17

18
19
20
21
22
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
```py
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="filename_in_the_community_folder")
```

Patrick von Platen's avatar
Patrick von Platen committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
## Example usages

### CLIP Guided Stable Diffusion

CLIP guided stable diffusion can help to generate more realistic images 
by guiding stable diffusion at every denoising step with an additional CLIP model.

The following code requires roughly 12GB of GPU RAM.

```python
from diffusers import DiffusionPipeline
from transformers import CLIPFeatureExtractor, CLIPModel
import torch


feature_extractor = CLIPFeatureExtractor.from_pretrained("laion/CLIP-ViT-B-32-laion2B-s34B-b79K")
clip_model = CLIPModel.from_pretrained("laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16)


guided_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="clip_guided_stable_diffusion",
    clip_model=clip_model,
    feature_extractor=feature_extractor,
    revision="fp16",
    torch_dtype=torch.float16,
)
guided_pipeline.enable_attention_slicing()
guided_pipeline = guided_pipeline.to("cuda")

prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece"

generator = torch.Generator(device="cuda").manual_seed(0)
images = []
for i in range(4):
    image = guided_pipeline(
        prompt,
        num_inference_steps=50,
        guidance_scale=7.5,
        clip_guidance_scale=100,
        num_cutouts=4,
        use_cutouts=False,
        generator=generator,
    ).images[0]
    images.append(image)
    
# save images locally
for i, img in enumerate(images):
    img.save(f"./clip_guided_sd/image_{i}.png")
```

The `images` list contains a list of PIL images that can be saved locally or displayed directly in a google colab.
Generated images tend to be of higher qualtiy than natively using stable diffusion. E.g. the above script generates the following images:

![clip_guidance](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/clip_guidance/merged_clip_guidance.jpg).

79
### One Step Unet
Patrick von Platen's avatar
Patrick von Platen committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

The dummy "one-step-unet" can be run as follows:

```python
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="one_step_unet")
pipe()
```

**Note**: This community pipeline is not useful as a feature, but rather just serves as an example of how community pipelines can be added (see https://github.com/huggingface/diffusers/issues/841).

### Stable Diffusion Interpolation

The following code can be run on a GPU of at least 8GB VRAM and should take approximately 5 minutes.

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    revision='fp16',
    torch_dtype=torch.float16,
    safety_checker=None,  # Very important for videos...lots of false positives while interpolating
    custom_pipeline="interpolate_stable_diffusion",
).to('cuda')
pipe.enable_attention_slicing()

frame_filepaths = pipe.walk(
    prompts=['a dog', 'a cat', 'a horse'],
    seeds=[42, 1337, 1234],
    num_interpolation_steps=16,
    output_dir='./dreams',
    batch_size=4,
    height=512,
    width=512,
    guidance_scale=8.5,
    num_inference_steps=50,
)
```

The output of the `walk(...)` function returns a list of images saved under the folder as defined in `output_dir`. You can use these images to create videos of stable diffusion. 

> **Please have a look at https://github.com/nateraw/stable-diffusion-videos for more in-detail information on how to create videos using stable diffusion as well as more feature-complete functionality.**
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

### Stable Diffusion Mega

The Stable Diffusion Mega Pipeline lets you use the main use cases of the stable diffusion pipeline in a single class.

```python
#!/usr/bin/env python3
from diffusers import DiffusionPipeline
import PIL
import requests
from io import BytesIO
import torch


def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

Patrick von Platen's avatar
Patrick von Platen committed
143
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="stable_diffusion_mega", torch_dtype=torch.float16, revision="fp16")
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
pipe.to("cuda")
pipe.enable_attention_slicing()


### Text-to-Image

images = pipe.text2img("An astronaut riding a horse").images

### Image-to-Image

init_image = download_image("https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg")

prompt = "A fantasy landscape, trending on artstation"

images = pipe.img2img(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5).images

### Inpainting

img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))

prompt = "a cat sitting on a bench"
images = pipe.inpaint(prompt=prompt, init_image=init_image, mask_image=mask_image, strength=0.75).images
```

As shown above this one pipeline can run all both "text-to-image", "image-to-image", and "inpainting" in one pipeline.

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
### Long Prompt Weighting Stable Diffusion

The Pipeline lets you input prompt without 77 token length limit. And you can increase words weighting by using "()" or decrease words weighting by using "[]"
The Pipeline also lets you use the main use cases of the stable diffusion pipeline in a single class.

#### pytorch

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    'hakurei/waifu-diffusion',
    custom_pipeline="lpw_stable_diffusion",
    revision="fp16",
    torch_dtype=torch.float16
)
pipe=pipe.to("cuda")

prompt = "best_quality (1girl:1.3) bow bride brown_hair closed_mouth frilled_bow frilled_hair_tubes frills (full_body:1.3) fox_ear hair_bow hair_tubes happy hood japanese_clothes kimono long_sleeves red_bow smile solo tabi uchikake white_kimono wide_sleeves cherry_blossoms"
neg_prompt = "lowres, bad_anatomy, error_body, error_hair, error_arm, error_hands, bad_hands, error_fingers, bad_fingers, missing_fingers, error_legs, bad_legs, multiple_legs, missing_legs, error_lighting, error_shadow, error_reflection, text, error, extra_digit, fewer_digits, cropped, worst_quality, low_quality, normal_quality, jpeg_artifacts, signature, watermark, username, blurry"

pipe.text2img(prompt, negative_prompt=neg_prompt, width=512,height=512,max_embeddings_multiples=3).images[0]

```

#### onnxruntime

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    'CompVis/stable-diffusion-v1-4',
    custom_pipeline="lpw_stable_diffusion_onnx",
    revision="onnx",
    provider="CUDAExecutionProvider"
)

prompt = "a photo of an astronaut riding a horse on mars, best quality"
neg_prompt = "lowres, bad anatomy, error body, error hair, error arm, error hands, bad hands, error fingers, bad fingers, missing fingers, error legs, bad legs, multiple legs, missing legs, error lighting, error shadow, error reflection, text, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry"

pipe.text2img(prompt,negative_prompt=neg_prompt, width=512, height=512, max_embeddings_multiples=3).images[0]

```

if you see `Token indices sequence length is longer than the specified maximum sequence length for this model ( *** > 77 ) . Running this sequence through the model will result in indexing errors`. Do not worry, it is normal.
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

### Speech to Image

The following code can generate an image from an audio sample using pre-trained OpenAI whisper-small and Stable Diffusion.

```Python
import torch

import matplotlib.pyplot as plt
from datasets import load_dataset
from diffusers import DiffusionPipeline
from transformers import (
    WhisperForConditionalGeneration,
    WhisperProcessor,
)


device = "cuda" if torch.cuda.is_available() else "cpu"

ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")

audio_sample = ds[3]

text = audio_sample["text"].lower()
speech_data = audio_sample["audio"]["array"]

model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
processor = WhisperProcessor.from_pretrained("openai/whisper-small")

diffuser_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="speech_to_image_diffusion",
    speech_model=model,
    speech_processor=processor,
    revision="fp16",
    torch_dtype=torch.float16,
)

diffuser_pipeline.enable_attention_slicing()
diffuser_pipeline = diffuser_pipeline.to(device)

output = diffuser_pipeline(speech_data)
plt.imshow(output.images[0])
```
This example produces the following image:

![image](https://user-images.githubusercontent.com/45072645/196901736-77d9c6fc-63ee-4072-90b0-dc8b903d63e3.png)