controlnet_flux.py 22.4 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn

from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
23
from ...utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers
Aryan's avatar
Aryan committed
24
from ..attention_processor import AttentionProcessor
25
from ..controlnets.controlnet import ControlNetConditioningEmbedding, zero_module
26
27
from ..embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
from ..modeling_outputs import Transformer2DModelOutput
Aryan's avatar
Aryan committed
28
from ..modeling_utils import ModelMixin
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from ..transformers.transformer_flux import FluxSingleTransformerBlock, FluxTransformerBlock


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class FluxControlNetOutput(BaseOutput):
    controlnet_block_samples: Tuple[torch.Tensor]
    controlnet_single_block_samples: Tuple[torch.Tensor]


class FluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        patch_size: int = 1,
        in_channels: int = 64,
        num_layers: int = 19,
        num_single_layers: int = 38,
        attention_head_dim: int = 128,
        num_attention_heads: int = 24,
        joint_attention_dim: int = 4096,
        pooled_projection_dim: int = 768,
        guidance_embeds: bool = False,
        axes_dims_rope: List[int] = [16, 56, 56],
        num_mode: int = None,
        conditioning_embedding_channels: int = None,
    ):
        super().__init__()
        self.out_channels = in_channels
        self.inner_dim = num_attention_heads * attention_head_dim

        self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
        text_time_guidance_cls = (
            CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
        )
        self.time_text_embed = text_time_guidance_cls(
            embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
        )

        self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
        self.x_embedder = torch.nn.Linear(in_channels, self.inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [
                FluxTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                )
                for i in range(num_layers)
            ]
        )

        self.single_transformer_blocks = nn.ModuleList(
            [
                FluxSingleTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                )
                for i in range(num_single_layers)
            ]
        )

        # controlnet_blocks
        self.controlnet_blocks = nn.ModuleList([])
        for _ in range(len(self.transformer_blocks)):
            self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))

        self.controlnet_single_blocks = nn.ModuleList([])
        for _ in range(len(self.single_transformer_blocks)):
            self.controlnet_single_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))

        self.union = num_mode is not None
        if self.union:
            self.controlnet_mode_embedder = nn.Embedding(num_mode, self.inner_dim)

        if conditioning_embedding_channels is not None:
            self.input_hint_block = ControlNetConditioningEmbedding(
                conditioning_embedding_channels=conditioning_embedding_channels, block_out_channels=(16, 16, 16, 16)
            )
            self.controlnet_x_embedder = torch.nn.Linear(in_channels, self.inner_dim)
        else:
            self.input_hint_block = None
            self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels, self.inner_dim))

        self.gradient_checkpointing = False

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self):
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    @classmethod
    def from_transformer(
        cls,
        transformer,
        num_layers: int = 4,
        num_single_layers: int = 10,
        attention_head_dim: int = 128,
        num_attention_heads: int = 24,
        load_weights_from_transformer=True,
    ):
191
        config = dict(transformer.config)
192
193
194
195
196
        config["num_layers"] = num_layers
        config["num_single_layers"] = num_single_layers
        config["attention_head_dim"] = attention_head_dim
        config["num_attention_heads"] = num_attention_heads

197
        controlnet = cls.from_config(config)
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

        if load_weights_from_transformer:
            controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
            controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
            controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict())
            controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
            controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
            controlnet.single_transformer_blocks.load_state_dict(
                transformer.single_transformer_blocks.state_dict(), strict=False
            )

            controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder)

        return controlnet

    def forward(
        self,
        hidden_states: torch.Tensor,
        controlnet_cond: torch.Tensor,
        controlnet_mode: torch.Tensor = None,
        conditioning_scale: float = 1.0,
        encoder_hidden_states: torch.Tensor = None,
        pooled_projections: torch.Tensor = None,
        timestep: torch.LongTensor = None,
        img_ids: torch.Tensor = None,
        txt_ids: torch.Tensor = None,
        guidance: torch.Tensor = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
    ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
        """
        The [`FluxTransformer2DModel`] forward method.

        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
                Input `hidden_states`.
            controlnet_cond (`torch.Tensor`):
                The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
            controlnet_mode (`torch.Tensor`):
                The mode tensor of shape `(batch_size, 1)`.
            conditioning_scale (`float`, defaults to `1.0`):
                The scale factor for ControlNet outputs.
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
                Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
            pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
                from the embeddings of input conditions.
            timestep ( `torch.LongTensor`):
                Used to indicate denoising step.
            block_controlnet_hidden_states: (`list` of `torch.Tensor`):
                A list of tensors that if specified are added to the residuals of transformer blocks.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        if joint_attention_kwargs is not None:
            joint_attention_kwargs = joint_attention_kwargs.copy()
            lora_scale = joint_attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
                )
        hidden_states = self.x_embedder(hidden_states)

        if self.input_hint_block is not None:
            controlnet_cond = self.input_hint_block(controlnet_cond)
            batch_size, channels, height_pw, width_pw = controlnet_cond.shape
            height = height_pw // self.config.patch_size
            width = width_pw // self.config.patch_size
            controlnet_cond = controlnet_cond.reshape(
                batch_size, channels, height, self.config.patch_size, width, self.config.patch_size
            )
            controlnet_cond = controlnet_cond.permute(0, 2, 4, 1, 3, 5)
            controlnet_cond = controlnet_cond.reshape(batch_size, height * width, -1)
        # add
        hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)

        timestep = timestep.to(hidden_states.dtype) * 1000
        if guidance is not None:
            guidance = guidance.to(hidden_states.dtype) * 1000
        else:
            guidance = None
        temb = (
            self.time_text_embed(timestep, pooled_projections)
            if guidance is None
            else self.time_text_embed(timestep, guidance, pooled_projections)
        )
        encoder_hidden_states = self.context_embedder(encoder_hidden_states)

        if txt_ids.ndim == 3:
            logger.warning(
                "Passing `txt_ids` 3d torch.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d torch Tensor"
            )
            txt_ids = txt_ids[0]
        if img_ids.ndim == 3:
            logger.warning(
                "Passing `img_ids` 3d torch.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d torch Tensor"
            )
            img_ids = img_ids[0]

314
315
316
317
318
319
320
321
322
        if self.union:
            # union mode
            if controlnet_mode is None:
                raise ValueError("`controlnet_mode` cannot be `None` when applying ControlNet-Union")
            # union mode emb
            controlnet_mode_emb = self.controlnet_mode_embedder(controlnet_mode)
            encoder_hidden_states = torch.cat([controlnet_mode_emb, encoder_hidden_states], dim=1)
            txt_ids = torch.cat([txt_ids[:1], txt_ids], dim=0)

323
324
325
326
327
        ids = torch.cat((txt_ids, img_ids), dim=0)
        image_rotary_emb = self.pos_embed(ids)

        block_samples = ()
        for index_block, block in enumerate(self.transformer_blocks):
328
            if torch.is_grad_enabled() and self.gradient_checkpointing:
329
330
                encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
                    block,
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    image_rotary_emb,
                )

            else:
                encoder_hidden_states, hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                )
            block_samples = block_samples + (hidden_states,)

        hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

        single_block_samples = ()
        for index_block, block in enumerate(self.single_transformer_blocks):
350
            if torch.is_grad_enabled() and self.gradient_checkpointing:
351
352
                hidden_states = self._gradient_checkpointing_func(
                    block,
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
                    hidden_states,
                    temb,
                    image_rotary_emb,
                )

            else:
                hidden_states = block(
                    hidden_states=hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                )
            single_block_samples = single_block_samples + (hidden_states[:, encoder_hidden_states.shape[1] :],)

        # controlnet block
        controlnet_block_samples = ()
        for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks):
            block_sample = controlnet_block(block_sample)
            controlnet_block_samples = controlnet_block_samples + (block_sample,)

        controlnet_single_block_samples = ()
        for single_block_sample, controlnet_block in zip(single_block_samples, self.controlnet_single_blocks):
            single_block_sample = controlnet_block(single_block_sample)
            controlnet_single_block_samples = controlnet_single_block_samples + (single_block_sample,)

        # scaling
        controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
        controlnet_single_block_samples = [sample * conditioning_scale for sample in controlnet_single_block_samples]

        controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
        controlnet_single_block_samples = (
            None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples
        )

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (controlnet_block_samples, controlnet_single_block_samples)

        return FluxControlNetOutput(
            controlnet_block_samples=controlnet_block_samples,
            controlnet_single_block_samples=controlnet_single_block_samples,
        )


class FluxMultiControlNetModel(ModelMixin):
    r"""
    `FluxMultiControlNetModel` wrapper class for Multi-FluxControlNetModel

    This module is a wrapper for multiple instances of the `FluxControlNetModel`. The `forward()` API is designed to be
    compatible with `FluxControlNetModel`.

    Args:
        controlnets (`List[FluxControlNetModel]`):
            Provides additional conditioning to the unet during the denoising process. You must set multiple
            `FluxControlNetModel` as a list.
    """

    def __init__(self, controlnets):
        super().__init__()
        self.nets = nn.ModuleList(controlnets)

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        controlnet_cond: List[torch.tensor],
        controlnet_mode: List[torch.tensor],
        conditioning_scale: List[float],
        encoder_hidden_states: torch.Tensor = None,
        pooled_projections: torch.Tensor = None,
        timestep: torch.LongTensor = None,
        img_ids: torch.Tensor = None,
        txt_ids: torch.Tensor = None,
        guidance: torch.Tensor = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
    ) -> Union[FluxControlNetOutput, Tuple]:
        # ControlNet-Union with multiple conditions
        # only load one ControlNet for saving memories
433
        if len(self.nets) == 1:
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
            controlnet = self.nets[0]

            for i, (image, mode, scale) in enumerate(zip(controlnet_cond, controlnet_mode, conditioning_scale)):
                block_samples, single_block_samples = controlnet(
                    hidden_states=hidden_states,
                    controlnet_cond=image,
                    controlnet_mode=mode[:, None],
                    conditioning_scale=scale,
                    timestep=timestep,
                    guidance=guidance,
                    pooled_projections=pooled_projections,
                    encoder_hidden_states=encoder_hidden_states,
                    txt_ids=txt_ids,
                    img_ids=img_ids,
                    joint_attention_kwargs=joint_attention_kwargs,
                    return_dict=return_dict,
                )

                # merge samples
                if i == 0:
                    control_block_samples = block_samples
                    control_single_block_samples = single_block_samples
                else:
457
458
459
460
461
462
463
464
465
466
467
468
                    if block_samples is not None and control_block_samples is not None:
                        control_block_samples = [
                            control_block_sample + block_sample
                            for control_block_sample, block_sample in zip(control_block_samples, block_samples)
                        ]
                    if single_block_samples is not None and control_single_block_samples is not None:
                        control_single_block_samples = [
                            control_single_block_sample + block_sample
                            for control_single_block_sample, block_sample in zip(
                                control_single_block_samples, single_block_samples
                            )
                        ]
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509

        # Regular Multi-ControlNets
        # load all ControlNets into memories
        else:
            for i, (image, mode, scale, controlnet) in enumerate(
                zip(controlnet_cond, controlnet_mode, conditioning_scale, self.nets)
            ):
                block_samples, single_block_samples = controlnet(
                    hidden_states=hidden_states,
                    controlnet_cond=image,
                    controlnet_mode=mode[:, None],
                    conditioning_scale=scale,
                    timestep=timestep,
                    guidance=guidance,
                    pooled_projections=pooled_projections,
                    encoder_hidden_states=encoder_hidden_states,
                    txt_ids=txt_ids,
                    img_ids=img_ids,
                    joint_attention_kwargs=joint_attention_kwargs,
                    return_dict=return_dict,
                )

                # merge samples
                if i == 0:
                    control_block_samples = block_samples
                    control_single_block_samples = single_block_samples
                else:
                    if block_samples is not None and control_block_samples is not None:
                        control_block_samples = [
                            control_block_sample + block_sample
                            for control_block_sample, block_sample in zip(control_block_samples, block_samples)
                        ]
                    if single_block_samples is not None and control_single_block_samples is not None:
                        control_single_block_samples = [
                            control_single_block_sample + block_sample
                            for control_single_block_sample, block_sample in zip(
                                control_single_block_samples, single_block_samples
                            )
                        ]

        return control_block_samples, control_single_block_samples