watermark.py 1.56 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
from typing import List

Anh71me's avatar
Anh71me committed
3
import PIL.Image
Patrick von Platen's avatar
Patrick von Platen committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import torch
from PIL import Image

from ...configuration_utils import ConfigMixin
from ...models.modeling_utils import ModelMixin
from ...utils import PIL_INTERPOLATION


class IFWatermarker(ModelMixin, ConfigMixin):
    def __init__(self):
        super().__init__()

        self.register_buffer("watermark_image", torch.zeros((62, 62, 4)))
        self.watermark_image_as_pil = None

    def apply_watermark(self, images: List[PIL.Image.Image], sample_size=None):
20
        # Copied from https://github.com/deep-floyd/IF/blob/b77482e36ca2031cb94dbca1001fc1e6400bf4ab/deepfloyd_if/modules/base.py#L287
Patrick von Platen's avatar
Patrick von Platen committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

        h = images[0].height
        w = images[0].width

        sample_size = sample_size or h

        coef = min(h / sample_size, w / sample_size)
        img_h, img_w = (int(h / coef), int(w / coef)) if coef < 1 else (h, w)

        S1, S2 = 1024**2, img_w * img_h
        K = (S2 / S1) ** 0.5
        wm_size, wm_x, wm_y = int(K * 62), img_w - int(14 * K), img_h - int(14 * K)

        if self.watermark_image_as_pil is None:
            watermark_image = self.watermark_image.to(torch.uint8).cpu().numpy()
            watermark_image = Image.fromarray(watermark_image, mode="RGBA")
            self.watermark_image_as_pil = watermark_image

        wm_img = self.watermark_image_as_pil.resize(
            (wm_size, wm_size), PIL_INTERPOLATION["bicubic"], reducing_gap=None
        )

        for pil_img in images:
            pil_img.paste(wm_img, box=(wm_x - wm_size, wm_y - wm_size, wm_x, wm_y), mask=wm_img.split()[-1])

        return images