dummy_pt_objects.py 9.62 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This file is autogenerated by the command `make fix-copies`, do not edit.
# flake8: noqa

from ..utils import DummyObject, requires_backends


class ModelMixin(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

13
14
15
16
17
18
19
20
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

21
22
23
24
25
26
27

class AutoencoderKL(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

28
29
30
31
32
33
34
35
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
class UNet1DModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


52
53
54
55
56
57
class UNet2DConditionModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

58
59
60
61
62
63
64
65
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

66
67
68
69
70
71
72

class UNet2DModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

73
74
75
76
77
78
79
80
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

81
82
83
84
85
86
87

class VQModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

88
89
90
91
92
93
94
95
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

def get_constant_schedule(*args, **kwargs):
    requires_backends(get_constant_schedule, ["torch"])


def get_constant_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_constant_schedule_with_warmup, ["torch"])


def get_cosine_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_cosine_schedule_with_warmup, ["torch"])


def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["torch"])


def get_linear_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_linear_schedule_with_warmup, ["torch"])


def get_polynomial_decay_schedule_with_warmup(*args, **kwargs):
    requires_backends(get_polynomial_decay_schedule_with_warmup, ["torch"])


def get_scheduler(*args, **kwargs):
    requires_backends(get_scheduler, ["torch"])


class DiffusionPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

131
132
133
134
135
136
137
138
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
class DanceDiffusionPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


155
156
157
158
159
160
class DDIMPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

161
162
163
164
165
166
167
168
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

169
170
171
172
173
174
175

class DDPMPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

176
177
178
179
180
181
182
183
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

184
185
186
187
188
189
190

class KarrasVePipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

191
192
193
194
195
196
197
198
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

199
200
201
202
203
204
205

class LDMPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

206
207
208
209
210
211
212
213
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

214
215
216
217
218
219
220

class PNDMPipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

221
222
223
224
225
226
227
228
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

229
230
231
232
233
234
235

class ScoreSdeVePipeline(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

236
237
238
239
240
241
242
243
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

244
245
246
247
248
249
250

class DDIMScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

251
252
253
254
255
256
257
258
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

259
260
261
262
263
264
265

class DDPMScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

266
    @classmethod
267
268
269
270
271
272
273
274
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


hlky's avatar
hlky committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
class EulerAncestralDiscreteScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


class EulerDiscreteScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])


305
306
307
308
309
310
311
class IPNDMScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

    @classmethod
312
313
314
315
316
317
318
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

319
320
321
322
323
324
325

class KarrasVeScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

326
327
328
329
330
331
332
333
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

334
335
336
337
338
339
340

class PNDMScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

341
342
343
344
345
346
347
348
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

349
350
351
352
353
354
355

class SchedulerMixin(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

356
357
358
359
360
361
362
363
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

364
365
366
367
368
369
370

class ScoreSdeVeScheduler(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])

371
372
373
374
375
376
377
378
    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

379
380
381
382
383
384

class EMAModel(metaclass=DummyObject):
    _backends = ["torch"]

    def __init__(self, *args, **kwargs):
        requires_backends(self, ["torch"])
385
386
387
388
389
390
391
392

    @classmethod
    def from_config(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])

    @classmethod
    def from_pretrained(cls, *args, **kwargs):
        requires_backends(cls, ["torch"])