configuration_utils.py 10.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Patrick von Platen's avatar
Patrick von Platen committed
16
""" ConfigMixinuration base class and utilities."""
17
18
19


import copy
Patrick von Platen's avatar
improve  
Patrick von Platen committed
20
import inspect
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import json
import os
import re
from typing import Any, Dict, Tuple, Union

from requests import HTTPError
from transformers.utils import (
    HUGGINGFACE_CO_RESOLVE_ENDPOINT,
    EntryNotFoundError,
    RepositoryNotFoundError,
    RevisionNotFoundError,
    cached_path,
    hf_bucket_url,
    is_offline_mode,
    is_remote_url,
    logging,
)

from . import __version__


logger = logging.get_logger(__name__)

_re_configuration_file = re.compile(r"config\.(.*)\.json")


Patrick von Platen's avatar
Patrick von Platen committed
47
class ConfigMixin:
48
49
50
51
52
    r"""
    Base class for all configuration classes. Handles a few parameters common to all models' configurations as well as
    methods for loading/downloading/saving configurations.

    """
53
    config_name = None
54

55
56
57
58
59
60
61
62
63
64
    def register(self, **kwargs):
        if self.config_name is None:
            raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
        kwargs["_class_name"] = self.__class__.__name__
        for key, value in kwargs.items():
            try:
                setattr(self, key, value)
            except AttributeError as err:
                logger.error(f"Can't set {key} with value {value} for {self}")
                raise err
65

66
67
        if not hasattr(self, "_dict_to_save"):
            self._dict_to_save = {}
68

69
        self._dict_to_save.update(kwargs)
70

71
    def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
72
73
        """
        Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the
Patrick von Platen's avatar
Patrick von Platen committed
74
        [`~ConfigMixin.from_config`] class method.
75
76
77
78
79
80
81
82
83
84
85
86

        Args:
            save_directory (`str` or `os.PathLike`):
                Directory where the configuration JSON file will be saved (will be created if it does not exist).
            kwargs:
                Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
        """
        if os.path.isfile(save_directory):
            raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")

        os.makedirs(save_directory, exist_ok=True)

87
88
        # If we save using the predefined names, we can load using `from_config`
        output_config_file = os.path.join(save_directory, self.config_name)
89

90
        self.to_json_file(output_config_file)
Patrick von Platen's avatar
Patrick von Platen committed
91
        logger.info(f"ConfigMixinuration saved in {output_config_file}")
92
93

    @classmethod
Patrick von Platen's avatar
Patrick von Platen committed
94
95
    def get_config_dict(
        cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        use_auth_token = kwargs.pop("use_auth_token", None)
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)

        user_agent = {"file_type": "config"}

        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

        pretrained_model_name_or_path = str(pretrained_model_name_or_path)
        if os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
            config_file = pretrained_model_name_or_path
        else:
115
            configuration_file = cls.config_name
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

            if os.path.isdir(pretrained_model_name_or_path):
                config_file = os.path.join(pretrained_model_name_or_path, configuration_file)
            else:
                config_file = hf_bucket_url(
                    pretrained_model_name_or_path, filename=configuration_file, revision=revision, mirror=None
                )

        try:
            # Load from URL or cache if already cached
            resolved_config_file = cached_path(
                config_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                user_agent=user_agent,
            )

        except RepositoryNotFoundError:
            raise EnvironmentError(
                f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier listed on "
                "'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a token having "
                "permission to this repo with `use_auth_token` or log in with `huggingface-cli login` and pass "
                "`use_auth_token=True`."
            )
        except RevisionNotFoundError:
            raise EnvironmentError(
                f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for this "
                f"model name. Check the model page at 'https://huggingface.co/{pretrained_model_name_or_path}' for "
                "available revisions."
            )
        except EntryNotFoundError:
            raise EnvironmentError(
                f"{pretrained_model_name_or_path} does not appear to have a file named {configuration_file}."
            )
        except HTTPError as err:
            raise EnvironmentError(
                f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}"
            )
        except ValueError:
            raise EnvironmentError(
                f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it in"
                f" the cached files and it looks like {pretrained_model_name_or_path} is not the path to a directory"
                f" containing a {configuration_file} file.\nCheckout your internet connection or see how to run the"
                " library in offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
            )
        except EnvironmentError:
            raise EnvironmentError(
                f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                f"containing a {configuration_file} file"
            )

        try:
            # Load config dict
            config_dict = cls._dict_from_json_file(resolved_config_file)
        except (json.JSONDecodeError, UnicodeDecodeError):
            raise EnvironmentError(
                f"It looks like the config file at '{resolved_config_file}' is not a valid JSON file."
            )

        if resolved_config_file == config_file:
            logger.info(f"loading configuration file {config_file}")
        else:
            logger.info(f"loading configuration file {config_file} from cache at {resolved_config_file}")
anton-l's avatar
Style  
anton-l committed
185

patil-suraj's avatar
patil-suraj committed
186
        return config_dict
187

patil-suraj's avatar
patil-suraj committed
188
189
    @classmethod
    def extract_init_dict(cls, config_dict, **kwargs):
190
191
        expected_keys = set(dict(inspect.signature(cls.__init__).parameters).keys())
        expected_keys.remove("self")
patil-suraj's avatar
patil-suraj committed
192
        init_dict = {}
Patrick von Platen's avatar
improve  
Patrick von Platen committed
193
194
195
        for key in expected_keys:
            if key in kwargs:
                # overwrite key
patil-suraj's avatar
patil-suraj committed
196
197
198
199
                init_dict[key] = kwargs.pop(key)
            elif key in config_dict:
                # use value from config dict
                init_dict[key] = config_dict.pop(key)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
200

patil-suraj's avatar
patil-suraj committed
201
        unused_kwargs = config_dict.update(kwargs)
anton-l's avatar
Style  
anton-l committed
202

patil-suraj's avatar
patil-suraj committed
203
        passed_keys = set(init_dict.keys())
204
205
        if len(expected_keys - passed_keys) > 0:
            logger.warn(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
206
                f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
207
            )
208

patil-suraj's avatar
patil-suraj committed
209
        return init_dict, unused_kwargs
Patrick von Platen's avatar
Patrick von Platen committed
210
211

    @classmethod
Patrick von Platen's avatar
improve  
Patrick von Platen committed
212
    def from_config(cls, pretrained_model_name_or_path: Union[str, os.PathLike], return_unused_kwargs=False, **kwargs):
anton-l's avatar
Style  
anton-l committed
213
        config_dict = cls.get_config_dict(pretrained_model_name_or_path=pretrained_model_name_or_path, **kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
214

patil-suraj's avatar
patil-suraj committed
215
216
217
        init_dict, unused_kwargs = cls.extract_init_dict(config_dict, **kwargs)

        model = cls(**init_dict)
218
219

        if return_unused_kwargs:
220
            return model, unused_kwargs
221
        else:
222
            return model
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

    @classmethod
    def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
        with open(json_file, "r", encoding="utf-8") as reader:
            text = reader.read()
        return json.loads(text)

    def __eq__(self, other):
        return self.__dict__ == other.__dict__

    def __repr__(self):
        return f"{self.__class__.__name__} {self.to_json_string()}"

    def to_dict(self) -> Dict[str, Any]:
        """
        Serializes this instance to a Python dictionary.

        Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
        """
        output = copy.deepcopy(self.__dict__)

245
        # Diffusion version when serializing the model
246
247
248
249
        output["diffusers_version"] = __version__

        return output

250
    def to_json_string(self) -> str:
251
252
253
254
255
256
        """
        Serializes this instance to a JSON string.

        Returns:
            `str`: String containing all the attributes that make up this configuration instance in JSON format.
        """
257
        config_dict = self._dict_to_save
258
259
        return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"

260
    def to_json_file(self, json_file_path: Union[str, os.PathLike]):
261
262
263
264
265
266
267
268
        """
        Save this instance to a JSON file.

        Args:
            json_file_path (`str` or `os.PathLike`):
                Path to the JSON file in which this configuration instance's parameters will be saved.
        """
        with open(json_file_path, "w", encoding="utf-8") as writer:
269
            writer.write(self.to_json_string())