unet_blocks.py 53.9 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

14
15
import numpy as np

Patrick von Platen's avatar
Patrick von Platen committed
16
# limitations under the License.
17
import torch
Patrick von Platen's avatar
Patrick von Platen committed
18
19
from torch import nn

20
21
from .attention import AttentionBlock, SpatialTransformer
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock2D, Upsample2D
Patrick von Platen's avatar
Patrick von Platen committed
22
23


24
25
26
27
28
29
30
31
32
33
def get_down_block(
    down_block_type,
    num_layers,
    in_channels,
    out_channels,
    temb_channels,
    add_downsample,
    resnet_eps,
    resnet_act_fn,
    attn_num_head_channels,
34
    resnet_groups=None,
35
    cross_attention_dim=None,
Patrick von Platen's avatar
Patrick von Platen committed
36
    downsample_padding=None,
37
):
Patrick von Platen's avatar
Patrick von Platen committed
38
39
40
    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlock2D":
        return DownBlock2D(
41
42
43
44
45
46
47
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
48
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
49
            downsample_padding=downsample_padding,
50
        )
Patrick von Platen's avatar
Patrick von Platen committed
51
52
    elif down_block_type == "AttnDownBlock2D":
        return AttnDownBlock2D(
53
54
55
56
57
58
59
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
60
            resnet_groups=resnet_groups,
61
            downsample_padding=downsample_padding,
62
63
            attn_num_head_channels=attn_num_head_channels,
        )
Patrick von Platen's avatar
Patrick von Platen committed
64
    elif down_block_type == "CrossAttnDownBlock2D":
65
        if cross_attention_dim is None:
66
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
67
        return CrossAttnDownBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
68
69
70
71
72
73
74
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
75
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
76
            downsample_padding=downsample_padding,
77
            cross_attention_dim=cross_attention_dim,
Patrick von Platen's avatar
Patrick von Platen committed
78
79
            attn_num_head_channels=attn_num_head_channels,
        )
Patrick von Platen's avatar
Patrick von Platen committed
80
81
    elif down_block_type == "SkipDownBlock2D":
        return SkipDownBlock2D(
82
83
84
85
86
87
88
89
90
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
        )
Patrick von Platen's avatar
Patrick von Platen committed
91
92
    elif down_block_type == "AttnSkipDownBlock2D":
        return AttnSkipDownBlock2D(
93
94
95
96
97
98
99
100
101
102
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
            attn_num_head_channels=attn_num_head_channels,
        )
103
104
105
106
107
108
109
110
    elif down_block_type == "DownEncoderBlock2D":
        return DownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
111
            resnet_groups=resnet_groups,
112
113
            downsample_padding=downsample_padding,
        )
114
115
116
117
118
119


def get_up_block(
    up_block_type,
    num_layers,
    in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
120
121
    out_channels,
    prev_output_channel,
122
123
124
125
126
    temb_channels,
    add_upsample,
    resnet_eps,
    resnet_act_fn,
    attn_num_head_channels,
127
    resnet_groups=None,
128
    cross_attention_dim=None,
129
):
Patrick von Platen's avatar
Patrick von Platen committed
130
131
132
    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlock2D":
        return UpBlock2D(
133
134
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
135
136
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
137
138
139
140
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
141
            resnet_groups=resnet_groups,
142
        )
Patrick von Platen's avatar
Patrick von Platen committed
143
    elif up_block_type == "CrossAttnUpBlock2D":
144
145
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
146
        return CrossAttnUpBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
147
148
149
150
151
152
153
154
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
155
            resnet_groups=resnet_groups,
156
            cross_attention_dim=cross_attention_dim,
Patrick von Platen's avatar
Patrick von Platen committed
157
158
            attn_num_head_channels=attn_num_head_channels,
        )
Patrick von Platen's avatar
Patrick von Platen committed
159
160
    elif up_block_type == "AttnUpBlock2D":
        return AttnUpBlock2D(
161
162
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
163
164
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
165
166
167
168
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
169
            resnet_groups=resnet_groups,
170
171
            attn_num_head_channels=attn_num_head_channels,
        )
Patrick von Platen's avatar
Patrick von Platen committed
172
173
    elif up_block_type == "SkipUpBlock2D":
        return SkipUpBlock2D(
174
175
176
177
178
179
180
181
182
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
Patrick von Platen's avatar
Patrick von Platen committed
183
184
    elif up_block_type == "AttnSkipUpBlock2D":
        return AttnSkipUpBlock2D(
185
186
187
188
189
190
191
192
193
194
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            attn_num_head_channels=attn_num_head_channels,
        )
195
196
197
198
199
200
201
202
    elif up_block_type == "UpDecoderBlock2D":
        return UpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
203
            resnet_groups=resnet_groups,
204
        )
205
    raise ValueError(f"{up_block_type} does not exist.")
206
207


Patrick von Platen's avatar
Patrick von Platen committed
208
209
210
211
212
class UNetMidBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
213
        dropout: float = 0.0,
214
        num_layers: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
215
216
217
218
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
219
        resnet_pre_norm: bool = True,
220
        attn_num_head_channels=1,
Patrick von Platen's avatar
Patrick von Platen committed
221
        attention_type="default",
Patrick von Platen's avatar
Patrick von Platen committed
222
        output_scale_factor=1.0,
223
        **kwargs,
Patrick von Platen's avatar
Patrick von Platen committed
224
225
226
    ):
        super().__init__()

Patrick von Platen's avatar
Patrick von Platen committed
227
        self.attention_type = attention_type
228
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
Patrick von Platen's avatar
Patrick von Platen committed
229

230
231
        # there is always at least one resnet
        resnets = [
232
            ResnetBlock2D(
233
234
235
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
236
                eps=resnet_eps,
237
238
239
240
241
242
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
Patrick von Platen's avatar
Patrick von Platen committed
243
            )
244
245
        ]
        attentions = []
Patrick von Platen's avatar
Patrick von Platen committed
246

247
248
        for _ in range(num_layers):
            attentions.append(
249
                AttentionBlock(
250
251
252
                    in_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
253
                    eps=resnet_eps,
254
                    num_groups=resnet_groups,
255
                )
256
            )
257
            resnets.append(
258
                ResnetBlock2D(
259
260
261
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
262
                    eps=resnet_eps,
263
264
265
266
267
268
269
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
Patrick von Platen's avatar
Patrick von Platen committed
270
271
            )

272
273
274
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

Patrick von Platen's avatar
Patrick von Platen committed
275
276
    def forward(self, hidden_states, temb=None, encoder_states=None):
        hidden_states = self.resnets[0](hidden_states, temb)
277
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Patrick von Platen's avatar
Patrick von Platen committed
278
279
            if self.attention_type == "default":
                hidden_states = attn(hidden_states)
280
            else:
Patrick von Platen's avatar
Patrick von Platen committed
281
282
                hidden_states = attn(hidden_states, encoder_states)
            hidden_states = resnet(hidden_states, temb)
Patrick von Platen's avatar
Patrick von Platen committed
283

284
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
285

286

Patrick von Platen's avatar
Patrick von Platen committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
class UNetMidBlock2DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        attention_type="default",
        output_scale_factor=1.0,
        cross_attention_dim=1280,
        **kwargs,
    ):
        super().__init__()

        self.attention_type = attention_type
308
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
309
310
311
312
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
313
            ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for _ in range(num_layers):
            attentions.append(
                SpatialTransformer(
                    in_channels,
                    attn_num_head_channels,
                    in_channels // attn_num_head_channels,
                    depth=1,
                    context_dim=cross_attention_dim,
336
                    num_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
337
338
339
                )
            )
            resnets.append(
340
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
    def set_attention_slice(self, slice_size):
        if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
            raise ValueError(
                f"Make sure slice_size {slice_size} is a divisor of "
                f"the number of heads used in cross_attention {self.attn_num_head_channels}"
            )
        if slice_size is not None and slice_size > self.attn_num_head_channels:
            raise ValueError(
                f"Chunk_size {slice_size} has to be smaller or equal to "
                f"the number of heads used in cross_attention {self.attn_num_head_channels}"
            )

        for attn in self.attentions:
            attn._set_attention_slice(slice_size)

Patrick von Platen's avatar
Patrick von Platen committed
372
373
374
375
376
377
378
379
380
    def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            hidden_states = attn(hidden_states, encoder_hidden_states)
            hidden_states = resnet(hidden_states, temb)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
381
class AttnDownBlock2D(nn.Module):
382
383
384
385
386
387
388
389
390
391
392
393
394
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
Patrick von Platen's avatar
Patrick von Platen committed
395
        attention_type="default",
396
        output_scale_factor=1.0,
397
        downsample_padding=1,
398
399
400
401
402
403
        add_downsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

Patrick von Platen's avatar
Patrick von Platen committed
404
405
        self.attention_type = attention_type

406
407
408
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
409
                ResnetBlock2D(
410
411
412
413
414
415
416
417
418
419
420
421
422
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
423
                AttentionBlock(
424
425
426
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
427
                    eps=resnet_eps,
428
                    num_groups=resnet_groups,
429
430
431
432
433
434
435
436
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
437
438
439
440
441
                [
                    Downsample2D(
                        in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
                    )
                ]
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
463
class CrossAttnDownBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        cross_attention_dim=1280,
        attention_type="default",
        output_scale_factor=1.0,
        downsample_padding=1,
        add_downsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.attention_type = attention_type
488
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
489
490
491
492

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
493
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
                SpatialTransformer(
                    out_channels,
                    attn_num_head_channels,
                    out_channels // attn_num_head_channels,
                    depth=1,
                    context_dim=cross_attention_dim,
513
                    num_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
                        in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
                    )
                ]
            )
        else:
            self.downsamplers = None

530
531
        self.gradient_checkpointing = False

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
    def set_attention_slice(self, slice_size):
        if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
            raise ValueError(
                f"Make sure slice_size {slice_size} is a divisor of "
                f"the number of heads used in cross_attention {self.attn_num_head_channels}"
            )
        if slice_size is not None and slice_size > self.attn_num_head_channels:
            raise ValueError(
                f"Chunk_size {slice_size} has to be smaller or equal to "
                f"the number of heads used in cross_attention {self.attn_num_head_channels}"
            )

        for attn in self.attentions:
            attn._set_attention_slice(slice_size)

Patrick von Platen's avatar
Patrick von Platen committed
547
548
549
550
    def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn), hidden_states, encoder_hidden_states
                )
            else:
                hidden_states = resnet(hidden_states, temb)
                hidden_states = attn(hidden_states, context=encoder_hidden_states)

Patrick von Platen's avatar
Patrick von Platen committed
567
568
569
570
571
572
573
574
575
576
577
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
578
class DownBlock2D(nn.Module):
579
580
581
582
583
584
585
586
587
588
589
590
591
592
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
Patrick von Platen's avatar
Patrick von Platen committed
593
        downsample_padding=1,
594
595
596
597
598
599
600
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
601
                ResnetBlock2D(
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
619
620
621
622
623
                [
                    Downsample2D(
                        in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
                    )
                ]
624
625
626
627
            )
        else:
            self.downsamplers = None

628
629
        self.gradient_checkpointing = False

630
631
632
633
    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
634
635
636
637
638
639
640
641
642
643
644
645
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)

646
647
648
649
650
651
652
653
654
655
656
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
class DownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
679
                ResnetBlock2D(
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
                        in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb=None)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
class AttnDownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []
        attentions = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
741
                ResnetBlock2D(
742
743
744
745
746
747
748
749
750
751
752
753
754
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
755
                AttentionBlock(
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
                    num_groups=resnet_groups,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
                        in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = attn(hidden_states)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
790
class AttnSkipDownBlock2D(nn.Module):
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        attention_type="default",
        output_scale_factor=np.sqrt(2.0),
        downsample_padding=1,
        add_downsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        self.attention_type = attention_type

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
817
                ResnetBlock2D(
818
819
820
821
822
823
824
825
826
827
828
829
830
831
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            self.attentions.append(
832
                AttentionBlock(
833
834
835
836
837
838
839
840
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
                )
            )

        if add_downsample:
841
            self.resnet_down = ResnetBlock2D(
842
843
844
845
846
847
848
849
850
851
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
852
                use_in_shortcut=True,
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
                down=True,
                kernel="fir",
            )
            self.downsamplers = nn.ModuleList([FirDownsample2D(in_channels, out_channels=out_channels)])
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
883
class SkipDownBlock2D(nn.Module):
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
905
                ResnetBlock2D(
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        if add_downsample:
921
            self.resnet_down = ResnetBlock2D(
922
923
924
925
926
927
928
929
930
931
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
932
                use_in_shortcut=True,
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
                down=True,
                kernel="fir",
            )
            self.downsamplers = nn.ModuleList([FirDownsample2D(in_channels, out_channels=out_channels)])
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
962
class AttnUpBlock2D(nn.Module):
963
964
965
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
966
967
        prev_output_channel: int,
        out_channels: int,
968
969
970
971
972
973
974
975
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
Patrick von Platen's avatar
Patrick von Platen committed
976
        attention_type="default",
977
978
979
980
981
982
983
984
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

Patrick von Platen's avatar
Patrick von Platen committed
985
986
        self.attention_type = attention_type

987
        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
988
989
990
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

991
            resnets.append(
992
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
993
994
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
995
996
997
998
999
1000
1001
1002
1003
1004
1005
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1006
                AttentionBlock(
Patrick von Platen's avatar
Patrick von Platen committed
1007
                    out_channels,
1008
1009
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
1010
                    eps=resnet_eps,
1011
                    num_groups=resnet_groups,
1012
1013
1014
1015
1016
1017
1018
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
1019
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
        else:
            self.upsamplers = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1040
class CrossAttnUpBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        cross_attention_dim=1280,
        attention_type="default",
        output_scale_factor=1.0,
        downsample_padding=1,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.attention_type = attention_type
1066
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
1067
1068
1069
1070
1071
1072

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
1073
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
                SpatialTransformer(
                    out_channels,
                    attn_num_head_channels,
                    out_channels // attn_num_head_channels,
                    depth=1,
                    context_dim=cross_attention_dim,
1093
                    num_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
                )
            )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

1104
1105
        self.gradient_checkpointing = False

1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
    def set_attention_slice(self, slice_size):
        if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
            raise ValueError(
                f"Make sure slice_size {slice_size} is a divisor of "
                f"the number of heads used in cross_attention {self.attn_num_head_channels}"
            )
        if slice_size is not None and slice_size > self.attn_num_head_channels:
            raise ValueError(
                f"Chunk_size {slice_size} has to be smaller or equal to "
                f"the number of heads used in cross_attention {self.attn_num_head_channels}"
            )

        for attn in self.attentions:
            attn._set_attention_slice(slice_size)

1121
1122
1123
1124
1125
1126
1127
1128
1129
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states,
        res_hidden_states_tuple,
        temb=None,
        encoder_hidden_states=None,
    ):
Patrick von Platen's avatar
Patrick von Platen committed
1130
1131
1132
1133
1134
1135
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn), hidden_states, encoder_hidden_states
                )
            else:
                hidden_states = resnet(hidden_states, temb)
                hidden_states = attn(hidden_states, context=encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1151
1152
1153
1154
1155
1156
1157
1158

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1159
class UpBlock2D(nn.Module):
1160
1161
1162
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
1163
1164
        prev_output_channel: int,
        out_channels: int,
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
1180
1181
1182
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

1183
            resnets.append(
1184
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1185
1186
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
1201
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
1202
1203
1204
        else:
            self.upsamplers = None

1205
1206
        self.gradient_checkpointing = False

1207
1208
1209
1210
1211
1212
1213
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)
1225
1226
1227
1228
1229
1230

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states
1231
1232


1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
class UpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
1255
                ResnetBlock2D(
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
                    in_channels=input_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

    def forward(self, hidden_states):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb=None)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
class AttnUpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
1311
                ResnetBlock2D(
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
                    in_channels=input_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1325
                AttentionBlock(
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
                    num_groups=resnet_groups,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

    def forward(self, hidden_states):
        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = attn(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1354
class AttnSkipUpBlock2D(nn.Module):
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        attention_type="default",
        output_scale_factor=np.sqrt(2.0),
        upsample_padding=1,
        add_upsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        self.attention_type = attention_type

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
1384
                ResnetBlock2D(
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(resnet_in_channels + res_skip_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions.append(
1400
            AttentionBlock(
1401
1402
1403
1404
1405
1406
1407
1408
1409
                out_channels,
                num_head_channels=attn_num_head_channels,
                rescale_output_factor=output_scale_factor,
                eps=resnet_eps,
            )
        )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
1410
            self.resnet_up = ResnetBlock2D(
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1422
                use_in_shortcut=True,
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        hidden_states = self.attentions[0](hidden_states)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1465
class SkipUpBlock2D(nn.Module):
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
        upsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
1490
                ResnetBlock2D(
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
1507
            self.resnet_up = ResnetBlock2D(
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1519
                use_in_shortcut=True,
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample