scheduling_lms_discrete.py 4.94 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Anton Lozhkov's avatar
Anton Lozhkov committed
15
from typing import Union
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

import numpy as np
import torch

from scipy import integrate

from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin


class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
    @register_to_config
    def __init__(
        self,
        num_train_timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        trained_betas=None,
        timestep_values=None,
        tensor_format="pt",
    ):
        """
39
40
        Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by
        Katherine Crowson:
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181
        """

        if beta_schedule == "linear":
            self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = np.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=np.float32) ** 2
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)

        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5

        # setable values
        self.num_inference_steps = None
        self.timesteps = np.arange(0, num_train_timesteps)[::-1].copy()
        self.derivatives = []

        self.tensor_format = tensor_format
        self.set_format(tensor_format=tensor_format)

    def get_lms_coefficient(self, order, t, current_order):
        """
        Compute a linear multistep coefficient
        """

        def lms_derivative(tau):
            prod = 1.0
            for k in range(order):
                if current_order == k:
                    continue
                prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
            return prod

        integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]

        return integrated_coeff

    def set_timesteps(self, num_inference_steps):
        self.num_inference_steps = num_inference_steps
        self.timesteps = np.linspace(self.num_train_timesteps - 1, 0, num_inference_steps, dtype=float)

        low_idx = np.floor(self.timesteps).astype(int)
        high_idx = np.ceil(self.timesteps).astype(int)
        frac = np.mod(self.timesteps, 1.0)
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = (1 - frac) * sigmas[low_idx] + frac * sigmas[high_idx]
        self.sigmas = np.concatenate([sigmas, [0.0]])

        self.derivatives = []

        self.set_format(tensor_format=self.tensor_format)

    def step(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
        order: int = 4,
    ):
        sigma = self.sigmas[timestep]

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
        pred_original_sample = sample - sigma * model_output

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma
        self.derivatives.append(derivative)
        if len(self.derivatives) > order:
            self.derivatives.pop(0)

        # 3. Compute linear multistep coefficients
        order = min(timestep + 1, order)
        lms_coeffs = [self.get_lms_coefficient(order, timestep, curr_order) for curr_order in range(order)]

        # 4. Compute previous sample based on the derivatives path
        prev_sample = sample + sum(
            coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
        )

        return {"prev_sample": prev_sample}

    def add_noise(self, original_samples, noise, timesteps):
        alpha_prod = self.alphas_cumprod[timesteps]
        alpha_prod = self.match_shape(alpha_prod, original_samples)

        noisy_samples = (alpha_prod**0.5) * original_samples + ((1 - alpha_prod) ** 0.5) * noise
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps