modular_pipeline_utils.py 25.9 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import re
from collections import OrderedDict
from dataclasses import dataclass, field, fields
from typing import Any, Dict, List, Literal, Optional, Type, Union

import torch

from ..configuration_utils import ConfigMixin, FrozenDict
from ..utils import is_torch_available, logging


if is_torch_available():
    pass

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class InsertableDict(OrderedDict):
    def insert(self, key, value, index):
        items = list(self.items())

        # Remove key if it already exists to avoid duplicates
        items = [(k, v) for k, v in items if k != key]

        # Insert at the specified index
        items.insert(index, (key, value))

        # Clear and update self
        self.clear()
        self.update(items)

        # Return self for method chaining
        return self

    def __repr__(self):
        if not self:
            return "InsertableDict()"

        items = []
        for i, (key, value) in enumerate(self.items()):
            if isinstance(value, type):
                # For classes, show class name and <class ...>
                obj_repr = f"<class '{value.__module__}.{value.__name__}'>"
            else:
                # For objects (instances) and other types, show class name and module
                obj_repr = f"<obj '{value.__class__.__module__}.{value.__class__.__name__}'>"
            items.append(f"{i}: ({repr(key)}, {obj_repr})")

        return "InsertableDict([\n  " + ",\n  ".join(items) + "\n])"


# YiYi TODO:
# 1. validate the dataclass fields
# 2. improve the docstring and potentially add a validator for load methods, make sure they are valid inputs to pass to from_pretrained()
@dataclass
class ComponentSpec:
    """Specification for a pipeline component.

    A component can be created in two ways:
    1. From scratch using __init__ with a config dict
    2. using `from_pretrained`

    Attributes:
        name: Name of the component
        type_hint: Type of the component (e.g. UNet2DConditionModel)
        description: Optional description of the component
        config: Optional config dict for __init__ creation
        repo: Optional repo path for from_pretrained creation
        subfolder: Optional subfolder in repo
        variant: Optional variant in repo
        revision: Optional revision in repo
        default_creation_method: Preferred creation method - "from_config" or "from_pretrained"
    """

    name: Optional[str] = None
    type_hint: Optional[Type] = None
    description: Optional[str] = None
    config: Optional[FrozenDict] = None
    # YiYi Notes: should we change it to pretrained_model_name_or_path for consistency? a bit long for a field name
    repo: Optional[Union[str, List[str]]] = field(default=None, metadata={"loading": True})
96
    subfolder: Optional[str] = field(default="", metadata={"loading": True})
YiYi Xu's avatar
YiYi Xu committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
    variant: Optional[str] = field(default=None, metadata={"loading": True})
    revision: Optional[str] = field(default=None, metadata={"loading": True})
    default_creation_method: Literal["from_config", "from_pretrained"] = "from_pretrained"

    def __hash__(self):
        """Make ComponentSpec hashable, using load_id as the hash value."""
        return hash((self.name, self.load_id, self.default_creation_method))

    def __eq__(self, other):
        """Compare ComponentSpec objects based on name and load_id."""
        if not isinstance(other, ComponentSpec):
            return False
        return (
            self.name == other.name
            and self.load_id == other.load_id
            and self.default_creation_method == other.default_creation_method
        )

    @classmethod
    def from_component(cls, name: str, component: Any) -> Any:
        """Create a ComponentSpec from a Component.

        Currently supports:
        - Components created with `ComponentSpec.load()` method
        - Components that are ConfigMixin subclasses but not nn.Modules (e.g. schedulers, guiders)

        Args:
            name: Name of the component
            component: Component object to create spec from

        Returns:
            ComponentSpec object

        Raises:
            ValueError: If component is not supported (e.g. nn.Module without load_id, non-ConfigMixin)
        """

        # Check if component was created with ComponentSpec.load()
        if hasattr(component, "_diffusers_load_id") and component._diffusers_load_id != "null":
            # component has a usable load_id -> from_pretrained, no warning needed
            default_creation_method = "from_pretrained"
        else:
            # Component doesn't have a usable load_id, check if it's a nn.Module
            if isinstance(component, torch.nn.Module):
                raise ValueError(
                    "Cannot create ComponentSpec from a nn.Module that was not created with `ComponentSpec.load()` method."
                )
            # ConfigMixin objects without weights (e.g. scheduler & guider) can be recreated with from_config
            elif isinstance(component, ConfigMixin):
                # warn if component was not created with `ComponentSpec`
                if not hasattr(component, "_diffusers_load_id"):
                    logger.warning(
                        "Component was not created using `ComponentSpec`, defaulting to `from_config` creation method"
                    )
                default_creation_method = "from_config"
            else:
                # Not a ConfigMixin and not created with `ComponentSpec.load()` method -> throw error
                raise ValueError(
                    f"Cannot create ComponentSpec from {name}({component.__class__.__name__}). Currently ComponentSpec.from_component() only supports: "
                    f" - components created with `ComponentSpec.load()` method"
                    f" - components that are a subclass of ConfigMixin but not a nn.Module (e.g. guider, scheduler)."
                )

        type_hint = component.__class__

        if isinstance(component, ConfigMixin) and default_creation_method == "from_config":
            config = component.config
        else:
            config = None
        if hasattr(component, "_diffusers_load_id") and component._diffusers_load_id != "null":
            load_spec = cls.decode_load_id(component._diffusers_load_id)
        else:
            load_spec = {}

        return cls(
            name=name, type_hint=type_hint, config=config, default_creation_method=default_creation_method, **load_spec
        )

    @classmethod
    def loading_fields(cls) -> List[str]:
        """
        Return the names of all loading‐related fields (i.e. those whose field.metadata["loading"] is True).
        """
        return [f.name for f in fields(cls) if f.metadata.get("loading", False)]

    @property
    def load_id(self) -> str:
        """
        Unique identifier for this spec's pretrained load, composed of repo|subfolder|variant|revision (no empty
        segments).
        """
        parts = [getattr(self, k) for k in self.loading_fields()]
        parts = ["null" if p is None else p for p in parts]
        return "|".join(p for p in parts if p)

    @classmethod
    def decode_load_id(cls, load_id: str) -> Dict[str, Optional[str]]:
        """
        Decode a load_id string back into a dictionary of loading fields and values.

        Args:
            load_id: The load_id string to decode, format: "repo|subfolder|variant|revision"
                     where None values are represented as "null"

        Returns:
            Dict mapping loading field names to their values. e.g. {
                "repo": "path/to/repo", "subfolder": "subfolder", "variant": "variant", "revision": "revision"
            } If a segment value is "null", it's replaced with None. Returns None if load_id is "null" (indicating
            component not created with `load` method).
        """

        # Get all loading fields in order
        loading_fields = cls.loading_fields()
        result = {f: None for f in loading_fields}

        if load_id == "null":
            return result

        # Split the load_id
        parts = load_id.split("|")

        # Map parts to loading fields by position
        for i, part in enumerate(parts):
            if i < len(loading_fields):
                # Convert "null" string back to None
                result[loading_fields[i]] = None if part == "null" else part

        return result

    # YiYi TODO: I think we should only support ConfigMixin for this method (after we make guider and image_processors config mixin)
    # otherwise we cannot do spec -> spec.create() -> component -> ComponentSpec.from_component(component)
    # the config info is lost in the process
    # remove error check in from_component spec and ModularPipeline.update_components() if we remove support for non configmixin in `create()` method
    def create(self, config: Optional[Union[FrozenDict, Dict[str, Any]]] = None, **kwargs) -> Any:
        """Create component using from_config with config."""

        if self.type_hint is None or not isinstance(self.type_hint, type):
            raise ValueError("`type_hint` is required when using from_config creation method.")

        config = config or self.config or {}

        if issubclass(self.type_hint, ConfigMixin):
            component = self.type_hint.from_config(config, **kwargs)
        else:
            signature_params = inspect.signature(self.type_hint.__init__).parameters
            init_kwargs = {}
            for k, v in config.items():
                if k in signature_params:
                    init_kwargs[k] = v
            for k, v in kwargs.items():
                if k in signature_params:
                    init_kwargs[k] = v
            component = self.type_hint(**init_kwargs)

        component._diffusers_load_id = "null"
        if hasattr(component, "config"):
            self.config = component.config

        return component

    # YiYi TODO: add guard for type of model, if it is supported by from_pretrained
    def load(self, **kwargs) -> Any:
        """Load component using from_pretrained."""

        # select loading fields from kwargs passed from user: e.g. repo, subfolder, variant, revision, note the list could change
        passed_loading_kwargs = {key: kwargs.pop(key) for key in self.loading_fields() if key in kwargs}
        # merge loading field value in the spec with user passed values to create load_kwargs
        load_kwargs = {key: passed_loading_kwargs.get(key, getattr(self, key)) for key in self.loading_fields()}
        # repo is a required argument for from_pretrained, a.k.a. pretrained_model_name_or_path
        repo = load_kwargs.pop("repo", None)
        if repo is None:
            raise ValueError(
                "`repo` info is required when using `load` method (you can directly set it in `repo` field of the ComponentSpec or pass it as an argument)"
            )

        if self.type_hint is None:
            try:
                from diffusers import AutoModel

                component = AutoModel.from_pretrained(repo, **load_kwargs, **kwargs)
            except Exception as e:
                raise ValueError(f"Unable to load {self.name} without `type_hint`: {e}")
            # update type_hint if AutoModel load successfully
            self.type_hint = component.__class__
        else:
            try:
                component = self.type_hint.from_pretrained(repo, **load_kwargs, **kwargs)
            except Exception as e:
                raise ValueError(f"Unable to load {self.name} using load method: {e}")

        self.repo = repo
        for k, v in load_kwargs.items():
            setattr(self, k, v)
        component._diffusers_load_id = self.load_id

        return component


@dataclass
class ConfigSpec:
    """Specification for a pipeline configuration parameter."""

    name: str
    default: Any
    description: Optional[str] = None


# YiYi Notes: both inputs and intermediate_inputs are InputParam objects
# however some fields are not relevant for intermediate_inputs
# e.g. unlike inputs, required only used in docstring for intermediate_inputs, we do not check if a required intermediate inputs is passed
# default is not used for intermediate_inputs, we only use default from inputs, so it is ignored if it is set for intermediate_inputs
# -> should we use different class for inputs and intermediate_inputs?
@dataclass
class InputParam:
    """Specification for an input parameter."""

    name: str = None
    type_hint: Any = None
    default: Any = None
    required: bool = False
    description: str = ""
    kwargs_type: str = None  # YiYi Notes: remove this feature (maybe)

    def __repr__(self):
        return f"<{self.name}: {'required' if self.required else 'optional'}, default={self.default}>"


@dataclass
class OutputParam:
    """Specification for an output parameter."""

    name: str
    type_hint: Any = None
    description: str = ""
    kwargs_type: str = None  # YiYi notes: remove this feature (maybe)

    def __repr__(self):
        return (
            f"<{self.name}: {self.type_hint.__name__ if hasattr(self.type_hint, '__name__') else str(self.type_hint)}>"
        )


def format_inputs_short(inputs):
    """
    Format input parameters into a string representation, with required params first followed by optional ones.

    Args:
        inputs: List of input parameters with 'required' and 'name' attributes, and 'default' for optional params

    Returns:
        str: Formatted string of input parameters

    Example:
        >>> inputs = [ ... InputParam(name="prompt", required=True), ... InputParam(name="image", required=True), ...
        InputParam(name="guidance_scale", required=False, default=7.5), ... InputParam(name="num_inference_steps",
        required=False, default=50) ... ] >>> format_inputs_short(inputs) 'prompt, image, guidance_scale=7.5,
        num_inference_steps=50'
    """
    required_inputs = [param for param in inputs if param.required]
    optional_inputs = [param for param in inputs if not param.required]

    required_str = ", ".join(param.name for param in required_inputs)
    optional_str = ", ".join(f"{param.name}={param.default}" for param in optional_inputs)

    inputs_str = required_str
    if optional_str:
        inputs_str = f"{inputs_str}, {optional_str}" if required_str else optional_str

    return inputs_str


def format_intermediates_short(intermediate_inputs, required_intermediate_inputs, intermediate_outputs):
    """
    Formats intermediate inputs and outputs of a block into a string representation.

    Args:
        intermediate_inputs: List of intermediate input parameters
        required_intermediate_inputs: List of required intermediate input names
        intermediate_outputs: List of intermediate output parameters

    Returns:
        str: Formatted string like:
            Intermediates:
                - inputs: Required(latents), dtype
                - modified: latents # variables that appear in both inputs and outputs
                - outputs: images # new outputs only
    """
    # Handle inputs
    input_parts = []
    for inp in intermediate_inputs:
        if inp.name in required_intermediate_inputs:
            input_parts.append(f"Required({inp.name})")
        else:
            if inp.name is None and inp.kwargs_type is not None:
                inp_name = "*_" + inp.kwargs_type
            else:
                inp_name = inp.name
            input_parts.append(inp_name)

    # Handle modified variables (appear in both inputs and outputs)
    inputs_set = {inp.name for inp in intermediate_inputs}
    modified_parts = []
    new_output_parts = []

    for out in intermediate_outputs:
        if out.name in inputs_set:
            modified_parts.append(out.name)
        else:
            new_output_parts.append(out.name)

    result = []
    if input_parts:
        result.append(f"    - inputs: {', '.join(input_parts)}")
    if modified_parts:
        result.append(f"    - modified: {', '.join(modified_parts)}")
    if new_output_parts:
        result.append(f"    - outputs: {', '.join(new_output_parts)}")

    return "\n".join(result) if result else "    (none)"


def format_params(params, header="Args", indent_level=4, max_line_length=115):
    """Format a list of InputParam or OutputParam objects into a readable string representation.

    Args:
        params: List of InputParam or OutputParam objects to format
        header: Header text to use (e.g. "Args" or "Returns")
        indent_level: Number of spaces to indent each parameter line (default: 4)
        max_line_length: Maximum length for each line before wrapping (default: 115)

    Returns:
        A formatted string representing all parameters
    """
    if not params:
        return ""

    base_indent = " " * indent_level
    param_indent = " " * (indent_level + 4)
    desc_indent = " " * (indent_level + 8)
    formatted_params = []

    def get_type_str(type_hint):
        if hasattr(type_hint, "__origin__") and type_hint.__origin__ is Union:
            types = [t.__name__ if hasattr(t, "__name__") else str(t) for t in type_hint.__args__]
            return f"Union[{', '.join(types)}]"
        return type_hint.__name__ if hasattr(type_hint, "__name__") else str(type_hint)

    def wrap_text(text, indent, max_length):
        """Wrap text while preserving markdown links and maintaining indentation."""
        words = text.split()
        lines = []
        current_line = []
        current_length = 0

        for word in words:
            word_length = len(word) + (1 if current_line else 0)

            if current_line and current_length + word_length > max_length:
                lines.append(" ".join(current_line))
                current_line = [word]
                current_length = len(word)
            else:
                current_line.append(word)
                current_length += word_length

        if current_line:
            lines.append(" ".join(current_line))

        return f"\n{indent}".join(lines)

    # Add the header
    formatted_params.append(f"{base_indent}{header}:")

    for param in params:
        # Format parameter name and type
        type_str = get_type_str(param.type_hint) if param.type_hint != Any else ""
        # YiYi Notes: remove this line if we remove kwargs_type
        name = f"**{param.kwargs_type}" if param.name is None and param.kwargs_type is not None else param.name
        param_str = f"{param_indent}{name} (`{type_str}`"

        # Add optional tag and default value if parameter is an InputParam and optional
        if hasattr(param, "required"):
            if not param.required:
                param_str += ", *optional*"
                if param.default is not None:
                    param_str += f", defaults to {param.default}"
        param_str += "):"

        # Add description on a new line with additional indentation and wrapping
        if param.description:
            desc = re.sub(r"\[(.*?)\]\((https?://[^\s\)]+)\)", r"[\1](\2)", param.description)
            wrapped_desc = wrap_text(desc, desc_indent, max_line_length)
            param_str += f"\n{desc_indent}{wrapped_desc}"

        formatted_params.append(param_str)

    return "\n\n".join(formatted_params)


def format_input_params(input_params, indent_level=4, max_line_length=115):
    """Format a list of InputParam objects into a readable string representation.

    Args:
        input_params: List of InputParam objects to format
        indent_level: Number of spaces to indent each parameter line (default: 4)
        max_line_length: Maximum length for each line before wrapping (default: 115)

    Returns:
        A formatted string representing all input parameters
    """
    return format_params(input_params, "Inputs", indent_level, max_line_length)


def format_output_params(output_params, indent_level=4, max_line_length=115):
    """Format a list of OutputParam objects into a readable string representation.

    Args:
        output_params: List of OutputParam objects to format
        indent_level: Number of spaces to indent each parameter line (default: 4)
        max_line_length: Maximum length for each line before wrapping (default: 115)

    Returns:
        A formatted string representing all output parameters
    """
    return format_params(output_params, "Outputs", indent_level, max_line_length)


def format_components(components, indent_level=4, max_line_length=115, add_empty_lines=True):
    """Format a list of ComponentSpec objects into a readable string representation.

    Args:
        components: List of ComponentSpec objects to format
        indent_level: Number of spaces to indent each component line (default: 4)
        max_line_length: Maximum length for each line before wrapping (default: 115)
        add_empty_lines: Whether to add empty lines between components (default: True)

    Returns:
        A formatted string representing all components
    """
    if not components:
        return ""

    base_indent = " " * indent_level
    component_indent = " " * (indent_level + 4)
    formatted_components = []

    # Add the header
    formatted_components.append(f"{base_indent}Components:")
    if add_empty_lines:
        formatted_components.append("")

    # Add each component with optional empty lines between them
    for i, component in enumerate(components):
        # Get type name, handling special cases
        type_name = (
            component.type_hint.__name__ if hasattr(component.type_hint, "__name__") else str(component.type_hint)
        )

        component_desc = f"{component_indent}{component.name} (`{type_name}`)"
        if component.description:
            component_desc += f": {component.description}"

        # Get the loading fields dynamically
        loading_field_values = []
        for field_name in component.loading_fields():
            field_value = getattr(component, field_name)
            if field_value is not None:
                loading_field_values.append(f"{field_name}={field_value}")

        # Add loading field information if available
        if loading_field_values:
            component_desc += f" [{', '.join(loading_field_values)}]"

        formatted_components.append(component_desc)

        # Add an empty line after each component except the last one
        if add_empty_lines and i < len(components) - 1:
            formatted_components.append("")

    return "\n".join(formatted_components)


def format_configs(configs, indent_level=4, max_line_length=115, add_empty_lines=True):
    """Format a list of ConfigSpec objects into a readable string representation.

    Args:
        configs: List of ConfigSpec objects to format
        indent_level: Number of spaces to indent each config line (default: 4)
        max_line_length: Maximum length for each line before wrapping (default: 115)
        add_empty_lines: Whether to add empty lines between configs (default: True)

    Returns:
        A formatted string representing all configs
    """
    if not configs:
        return ""

    base_indent = " " * indent_level
    config_indent = " " * (indent_level + 4)
    formatted_configs = []

    # Add the header
    formatted_configs.append(f"{base_indent}Configs:")
    if add_empty_lines:
        formatted_configs.append("")

    # Add each config with optional empty lines between them
    for i, config in enumerate(configs):
        config_desc = f"{config_indent}{config.name} (default: {config.default})"
        if config.description:
            config_desc += f": {config.description}"
        formatted_configs.append(config_desc)

        # Add an empty line after each config except the last one
        if add_empty_lines and i < len(configs) - 1:
            formatted_configs.append("")

    return "\n".join(formatted_configs)


def make_doc_string(
    inputs,
    intermediate_inputs,
    outputs,
    description="",
    class_name=None,
    expected_components=None,
    expected_configs=None,
):
    """
    Generates a formatted documentation string describing the pipeline block's parameters and structure.

    Args:
        inputs: List of input parameters
        intermediate_inputs: List of intermediate input parameters
        outputs: List of output parameters
        description (str, *optional*): Description of the block
        class_name (str, *optional*): Name of the class to include in the documentation
        expected_components (List[ComponentSpec], *optional*): List of expected components
        expected_configs (List[ConfigSpec], *optional*): List of expected configurations

    Returns:
        str: A formatted string containing information about components, configs, call parameters,
            intermediate inputs/outputs, and final outputs.
    """
    output = ""

    # Add class name if provided
    if class_name:
        output += f"class {class_name}\n\n"

    # Add description
    if description:
        desc_lines = description.strip().split("\n")
        aligned_desc = "\n".join("  " + line for line in desc_lines)
        output += aligned_desc + "\n\n"

    # Add components section if provided
    if expected_components and len(expected_components) > 0:
        components_str = format_components(expected_components, indent_level=2)
        output += components_str + "\n\n"

    # Add configs section if provided
    if expected_configs and len(expected_configs) > 0:
        configs_str = format_configs(expected_configs, indent_level=2)
        output += configs_str + "\n\n"

    # Add inputs section
    output += format_input_params(inputs + intermediate_inputs, indent_level=2)

    # Add outputs section
    output += "\n\n"
    output += format_output_params(outputs, indent_level=2)

    return output