training_utils.py 12.5 KB
Newer Older
anton-l's avatar
anton-l committed
1
import copy
2
3
import os
import random
4
from typing import Any, Dict, Iterable, Optional, Union
anton-l's avatar
anton-l committed
5

6
import numpy as np
anton-l's avatar
anton-l committed
7
8
import torch

9
10
from .utils import deprecate

anton-l's avatar
anton-l committed
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
def enable_full_determinism(seed: int):
    """
    Helper function for reproducible behavior during distributed training. See
    - https://pytorch.org/docs/stable/notes/randomness.html for pytorch
    """
    # set seed first
    set_seed(seed)

    #  Enable PyTorch deterministic mode. This potentially requires either the environment
    #  variable 'CUDA_LAUNCH_BLOCKING' or 'CUBLAS_WORKSPACE_CONFIG' to be set,
    # depending on the CUDA version, so we set them both here
    os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
    os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
    torch.use_deterministic_algorithms(True)

    # Enable CUDNN deterministic mode
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


def set_seed(seed: int):
    """
    Args:
35
    Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch`.
36
37
38
39
40
41
42
43
44
        seed (`int`): The seed to set.
    """
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    # ^^ safe to call this function even if cuda is not available


45
# Adapted from torch-ema https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py#L14
anton-l's avatar
anton-l committed
46
47
48
49
50
51
52
class EMAModel:
    """
    Exponential Moving Average of models weights
    """

    def __init__(
        self,
53
54
55
56
57
58
59
        parameters: Iterable[torch.nn.Parameter],
        decay: float = 0.9999,
        min_decay: float = 0.0,
        update_after_step: int = 0,
        use_ema_warmup: bool = False,
        inv_gamma: Union[float, int] = 1.0,
        power: Union[float, int] = 2 / 3,
60
61
        model_cls: Optional[Any] = None,
        model_config: Dict[str, Any] = None,
62
        **kwargs,
anton-l's avatar
anton-l committed
63
64
    ):
        """
65
66
67
68
69
70
71
72
73
74
75
76
        Args:
            parameters (Iterable[torch.nn.Parameter]): The parameters to track.
            decay (float): The decay factor for the exponential moving average.
            min_decay (float): The minimum decay factor for the exponential moving average.
            update_after_step (int): The number of steps to wait before starting to update the EMA weights.
            use_ema_warmup (bool): Whether to use EMA warmup.
            inv_gamma (float):
                Inverse multiplicative factor of EMA warmup. Default: 1. Only used if `use_ema_warmup` is True.
            power (float): Exponential factor of EMA warmup. Default: 2/3. Only used if `use_ema_warmup` is True.
            device (Optional[Union[str, torch.device]]): The device to store the EMA weights on. If None, the EMA
                        weights will be stored on CPU.

anton-l's avatar
anton-l committed
77
        @crowsonkb's notes on EMA Warmup:
Patrick von Platen's avatar
Patrick von Platen committed
78
79
80
81
            If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models you plan
            to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999 at 1M steps),
            gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999
            at 215.4k steps).
anton-l's avatar
anton-l committed
82
83
        """

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        if isinstance(parameters, torch.nn.Module):
            deprecation_message = (
                "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. "
                "Please pass the parameters of the module instead."
            )
            deprecate(
                "passing a `torch.nn.Module` to `ExponentialMovingAverage`",
                "1.0.0",
                deprecation_message,
                standard_warn=False,
            )
            parameters = parameters.parameters()

            # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility
            use_ema_warmup = True

        if kwargs.get("max_value", None) is not None:
            deprecation_message = "The `max_value` argument is deprecated. Please use `decay` instead."
            deprecate("max_value", "1.0.0", deprecation_message, standard_warn=False)
            decay = kwargs["max_value"]

        if kwargs.get("min_value", None) is not None:
            deprecation_message = "The `min_value` argument is deprecated. Please use `min_decay` instead."
            deprecate("min_value", "1.0.0", deprecation_message, standard_warn=False)
            min_decay = kwargs["min_value"]

        parameters = list(parameters)
        self.shadow_params = [p.clone().detach() for p in parameters]

        if kwargs.get("device", None) is not None:
            deprecation_message = "The `device` argument is deprecated. Please use `to` instead."
            deprecate("device", "1.0.0", deprecation_message, standard_warn=False)
            self.to(device=kwargs["device"])

        self.collected_params = None
anton-l's avatar
anton-l committed
119

120
121
        self.decay = decay
        self.min_decay = min_decay
anton-l's avatar
anton-l committed
122
        self.update_after_step = update_after_step
123
        self.use_ema_warmup = use_ema_warmup
anton-l's avatar
anton-l committed
124
125
        self.inv_gamma = inv_gamma
        self.power = power
126
        self.optimization_step = 0
127
        self.cur_decay_value = None  # set in `step()`
anton-l's avatar
anton-l committed
128

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        self.model_cls = model_cls
        self.model_config = model_config

    @classmethod
    def from_pretrained(cls, path, model_cls) -> "EMAModel":
        _, ema_kwargs = model_cls.load_config(path, return_unused_kwargs=True)
        model = model_cls.from_pretrained(path)

        ema_model = cls(model.parameters(), model_cls=model_cls, model_config=model.config)

        ema_model.load_state_dict(ema_kwargs)
        return ema_model

    def save_pretrained(self, path):
        if self.model_cls is None:
            raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__.")

        if self.model_config is None:
            raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__.")

        model = self.model_cls.from_config(self.model_config)
        state_dict = self.state_dict()
        state_dict.pop("shadow_params", None)
        state_dict.pop("collected_params", None)

        model.register_to_config(**state_dict)
        self.copy_to(model.parameters())
        model.save_pretrained(path)

158
    def get_decay(self, optimization_step: int) -> float:
anton-l's avatar
anton-l committed
159
160
161
162
163
164
165
166
        """
        Compute the decay factor for the exponential moving average.
        """
        step = max(0, optimization_step - self.update_after_step - 1)

        if step <= 0:
            return 0.0

167
168
169
170
171
172
173
174
175
        if self.use_ema_warmup:
            cur_decay_value = 1 - (1 + step / self.inv_gamma) ** -self.power
        else:
            cur_decay_value = (1 + step) / (10 + step)

        cur_decay_value = min(cur_decay_value, self.decay)
        # make sure decay is not smaller than min_decay
        cur_decay_value = max(cur_decay_value, self.min_decay)
        return cur_decay_value
anton-l's avatar
anton-l committed
176
177

    @torch.no_grad()
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    def step(self, parameters: Iterable[torch.nn.Parameter]):
        if isinstance(parameters, torch.nn.Module):
            deprecation_message = (
                "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. "
                "Please pass the parameters of the module instead."
            )
            deprecate(
                "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`",
                "1.0.0",
                deprecation_message,
                standard_warn=False,
            )
            parameters = parameters.parameters()

        parameters = list(parameters)

        self.optimization_step += 1

        # Compute the decay factor for the exponential moving average.
        decay = self.get_decay(self.optimization_step)
198
        self.cur_decay_value = decay
199
200
201
202
203
        one_minus_decay = 1 - decay

        for s_param, param in zip(self.shadow_params, parameters):
            if param.requires_grad:
                s_param.sub_(one_minus_decay * (s_param - param))
anton-l's avatar
anton-l committed
204
            else:
205
                s_param.copy_(param)
anton-l's avatar
anton-l committed
206

207
        torch.cuda.empty_cache()
anton-l's avatar
anton-l committed
208

209
210
211
    def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None:
        """
        Copy current averaged parameters into given collection of parameters.
anton-l's avatar
anton-l committed
212

213
214
215
216
217
218
219
        Args:
            parameters: Iterable of `torch.nn.Parameter`; the parameters to be
                updated with the stored moving averages. If `None`, the parameters with which this
                `ExponentialMovingAverage` was initialized will be used.
        """
        parameters = list(parameters)
        for s_param, param in zip(self.shadow_params, parameters):
220
            param.data.copy_(s_param.to(param.device).data)
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

    def to(self, device=None, dtype=None) -> None:
        r"""Move internal buffers of the ExponentialMovingAverage to `device`.

        Args:
            device: like `device` argument to `torch.Tensor.to`
        """
        # .to() on the tensors handles None correctly
        self.shadow_params = [
            p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device)
            for p in self.shadow_params
        ]

    def state_dict(self) -> dict:
        r"""
        Returns the state of the ExponentialMovingAverage as a dict. This method is used by accelerate during
        checkpointing to save the ema state dict.
        """
        # Following PyTorch conventions, references to tensors are returned:
        # "returns a reference to the state and not its copy!" -
        # https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict
        return {
            "decay": self.decay,
244
            "min_decay": self.min_decay,
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
            "optimization_step": self.optimization_step,
            "update_after_step": self.update_after_step,
            "use_ema_warmup": self.use_ema_warmup,
            "inv_gamma": self.inv_gamma,
            "power": self.power,
            "shadow_params": self.shadow_params,
            "collected_params": self.collected_params,
        }

    def load_state_dict(self, state_dict: dict) -> None:
        r"""
        Args:
        Loads the ExponentialMovingAverage state. This method is used by accelerate during checkpointing to save the
        ema state dict.
            state_dict (dict): EMA state. Should be an object returned
                from a call to :meth:`state_dict`.
        """
        # deepcopy, to be consistent with module API
        state_dict = copy.deepcopy(state_dict)

        self.decay = state_dict.get("decay", self.decay)
        if self.decay < 0.0 or self.decay > 1.0:
            raise ValueError("Decay must be between 0 and 1")

        self.min_decay = state_dict.get("min_decay", self.min_decay)
        if not isinstance(self.min_decay, float):
            raise ValueError("Invalid min_decay")

        self.optimization_step = state_dict.get("optimization_step", self.optimization_step)
        if not isinstance(self.optimization_step, int):
            raise ValueError("Invalid optimization_step")

        self.update_after_step = state_dict.get("update_after_step", self.update_after_step)
        if not isinstance(self.update_after_step, int):
            raise ValueError("Invalid update_after_step")

        self.use_ema_warmup = state_dict.get("use_ema_warmup", self.use_ema_warmup)
        if not isinstance(self.use_ema_warmup, bool):
            raise ValueError("Invalid use_ema_warmup")

        self.inv_gamma = state_dict.get("inv_gamma", self.inv_gamma)
        if not isinstance(self.inv_gamma, (float, int)):
            raise ValueError("Invalid inv_gamma")

289
        self.power = state_dict.get("power", self.power)
290
291
292
        if not isinstance(self.power, (float, int)):
            raise ValueError("Invalid power")

293
294
295
296
297
298
299
        shadow_params = state_dict.get("shadow_params", None)
        if shadow_params is not None:
            self.shadow_params = shadow_params
            if not isinstance(self.shadow_params, list):
                raise ValueError("shadow_params must be a list")
            if not all(isinstance(p, torch.Tensor) for p in self.shadow_params):
                raise ValueError("shadow_params must all be Tensors")
300

301
        self.collected_params = state_dict.get("collected_params", None)
302
303
304
305
306
307
308
        if self.collected_params is not None:
            if not isinstance(self.collected_params, list):
                raise ValueError("collected_params must be a list")
            if not all(isinstance(p, torch.Tensor) for p in self.collected_params):
                raise ValueError("collected_params must all be Tensors")
            if len(self.collected_params) != len(self.shadow_params):
                raise ValueError("collected_params and shadow_params must have the same length")