unet_3d_blocks.py 24.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from torch import nn

18
from ..utils.torch_utils import apply_freeu
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from .resnet import Downsample2D, ResnetBlock2D, TemporalConvLayer, Upsample2D
from .transformer_2d import Transformer2DModel
from .transformer_temporal import TransformerTemporalModel


def get_down_block(
    down_block_type,
    num_layers,
    in_channels,
    out_channels,
    temb_channels,
    add_downsample,
    resnet_eps,
    resnet_act_fn,
33
    num_attention_heads,
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    resnet_groups=None,
    cross_attention_dim=None,
    downsample_padding=None,
    dual_cross_attention=False,
    use_linear_projection=True,
    only_cross_attention=False,
    upcast_attention=False,
    resnet_time_scale_shift="default",
):
    if down_block_type == "DownBlock3D":
        return DownBlock3D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    elif down_block_type == "CrossAttnDownBlock3D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
        return CrossAttnDownBlock3D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
            cross_attention_dim=cross_attention_dim,
70
            num_attention_heads=num_attention_heads,
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
            dual_cross_attention=dual_cross_attention,
            use_linear_projection=use_linear_projection,
            only_cross_attention=only_cross_attention,
            upcast_attention=upcast_attention,
            resnet_time_scale_shift=resnet_time_scale_shift,
        )
    raise ValueError(f"{down_block_type} does not exist.")


def get_up_block(
    up_block_type,
    num_layers,
    in_channels,
    out_channels,
    prev_output_channel,
    temb_channels,
    add_upsample,
    resnet_eps,
    resnet_act_fn,
90
    num_attention_heads,
91
    resolution_idx=None,
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    resnet_groups=None,
    cross_attention_dim=None,
    dual_cross_attention=False,
    use_linear_projection=True,
    only_cross_attention=False,
    upcast_attention=False,
    resnet_time_scale_shift="default",
):
    if up_block_type == "UpBlock3D":
        return UpBlock3D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
112
            resolution_idx=resolution_idx,
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        )
    elif up_block_type == "CrossAttnUpBlock3D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
        return CrossAttnUpBlock3D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
128
            num_attention_heads=num_attention_heads,
129
130
131
132
133
            dual_cross_attention=dual_cross_attention,
            use_linear_projection=use_linear_projection,
            only_cross_attention=only_cross_attention,
            upcast_attention=upcast_attention,
            resnet_time_scale_shift=resnet_time_scale_shift,
134
            resolution_idx=resolution_idx,
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        )
    raise ValueError(f"{up_block_type} does not exist.")


class UNetMidBlock3DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
151
        num_attention_heads=1,
152
153
154
155
156
157
158
159
160
        output_scale_factor=1.0,
        cross_attention_dim=1280,
        dual_cross_attention=False,
        use_linear_projection=True,
        upcast_attention=False,
    ):
        super().__init__()

        self.has_cross_attention = True
161
        self.num_attention_heads = num_attention_heads
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
            ResnetBlock2D(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        temp_convs = [
            TemporalConvLayer(
                in_channels,
                in_channels,
                dropout=0.1,
            )
        ]
        attentions = []
        temp_attentions = []

        for _ in range(num_layers):
            attentions.append(
                Transformer2DModel(
192
193
                    in_channels // num_attention_heads,
                    num_attention_heads,
194
195
196
197
198
199
200
201
202
203
                    in_channels=in_channels,
                    num_layers=1,
                    cross_attention_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    use_linear_projection=use_linear_projection,
                    upcast_attention=upcast_attention,
                )
            )
            temp_attentions.append(
                TransformerTemporalModel(
204
205
                    in_channels // num_attention_heads,
                    num_attention_heads,
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
                    in_channels=in_channels,
                    num_layers=1,
                    cross_attention_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                )
            )
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            temp_convs.append(
                TemporalConvLayer(
                    in_channels,
                    in_channels,
                    dropout=0.1,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.temp_convs = nn.ModuleList(temp_convs)
        self.attentions = nn.ModuleList(attentions)
        self.temp_attentions = nn.ModuleList(temp_attentions)

    def forward(
        self,
        hidden_states,
        temb=None,
        encoder_hidden_states=None,
        attention_mask=None,
        num_frames=1,
        cross_attention_kwargs=None,
    ):
        hidden_states = self.resnets[0](hidden_states, temb)
        hidden_states = self.temp_convs[0](hidden_states, num_frames=num_frames)
        for attn, temp_attn, resnet, temp_conv in zip(
            self.attentions, self.temp_attentions, self.resnets[1:], self.temp_convs[1:]
        ):
            hidden_states = attn(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                cross_attention_kwargs=cross_attention_kwargs,
257
258
                return_dict=False,
            )[0]
259
            hidden_states = temp_attn(
260
261
                hidden_states, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs, return_dict=False
            )[0]
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
            hidden_states = resnet(hidden_states, temb)
            hidden_states = temp_conv(hidden_states, num_frames=num_frames)

        return hidden_states


class CrossAttnDownBlock3D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
281
        num_attention_heads=1,
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        downsample_padding=1,
        add_downsample=True,
        dual_cross_attention=False,
        use_linear_projection=False,
        only_cross_attention=False,
        upcast_attention=False,
    ):
        super().__init__()
        resnets = []
        attentions = []
        temp_attentions = []
        temp_convs = []

        self.has_cross_attention = True
298
        self.num_attention_heads = num_attention_heads
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            temp_convs.append(
                TemporalConvLayer(
                    out_channels,
                    out_channels,
                    dropout=0.1,
                )
            )
            attentions.append(
                Transformer2DModel(
325
326
                    out_channels // num_attention_heads,
                    num_attention_heads,
327
328
329
330
331
332
333
334
335
336
337
                    in_channels=out_channels,
                    num_layers=1,
                    cross_attention_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    use_linear_projection=use_linear_projection,
                    only_cross_attention=only_cross_attention,
                    upcast_attention=upcast_attention,
                )
            )
            temp_attentions.append(
                TransformerTemporalModel(
338
339
                    out_channels // num_attention_heads,
                    num_attention_heads,
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
                    in_channels=out_channels,
                    num_layers=1,
                    cross_attention_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                )
            )
        self.resnets = nn.ModuleList(resnets)
        self.temp_convs = nn.ModuleList(temp_convs)
        self.attentions = nn.ModuleList(attentions)
        self.temp_attentions = nn.ModuleList(temp_attentions)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states,
        temb=None,
        encoder_hidden_states=None,
        attention_mask=None,
        num_frames=1,
        cross_attention_kwargs=None,
    ):
        # TODO(Patrick, William) - attention mask is not used
        output_states = ()

        for resnet, temp_conv, attn, temp_attn in zip(
            self.resnets, self.temp_convs, self.attentions, self.temp_attentions
        ):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = temp_conv(hidden_states, num_frames=num_frames)
            hidden_states = attn(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                cross_attention_kwargs=cross_attention_kwargs,
385
386
                return_dict=False,
            )[0]
387
            hidden_states = temp_attn(
388
389
                hidden_states, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs, return_dict=False
            )[0]
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


class DownBlock3D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []
        temp_convs = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            temp_convs.append(
                TemporalConvLayer(
                    out_channels,
                    out_channels,
                    dropout=0.1,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.temp_convs = nn.ModuleList(temp_convs)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, temb=None, num_frames=1):
        output_states = ()

        for resnet, temp_conv in zip(self.resnets, self.temp_convs):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = temp_conv(hidden_states, num_frames=num_frames)

            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


class CrossAttnUpBlock3D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
495
        num_attention_heads=1,
496
497
498
499
500
501
502
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
        dual_cross_attention=False,
        use_linear_projection=False,
        only_cross_attention=False,
        upcast_attention=False,
503
        resolution_idx=None,
504
505
506
507
508
509
510
511
    ):
        super().__init__()
        resnets = []
        temp_convs = []
        attentions = []
        temp_attentions = []

        self.has_cross_attention = True
512
        self.num_attention_heads = num_attention_heads
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            temp_convs.append(
                TemporalConvLayer(
                    out_channels,
                    out_channels,
                    dropout=0.1,
                )
            )
            attentions.append(
                Transformer2DModel(
541
542
                    out_channels // num_attention_heads,
                    num_attention_heads,
543
544
545
546
547
548
549
550
551
552
553
                    in_channels=out_channels,
                    num_layers=1,
                    cross_attention_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    use_linear_projection=use_linear_projection,
                    only_cross_attention=only_cross_attention,
                    upcast_attention=upcast_attention,
                )
            )
            temp_attentions.append(
                TransformerTemporalModel(
554
555
                    out_channels // num_attention_heads,
                    num_attention_heads,
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
                    in_channels=out_channels,
                    num_layers=1,
                    cross_attention_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                )
            )
        self.resnets = nn.ModuleList(resnets)
        self.temp_convs = nn.ModuleList(temp_convs)
        self.attentions = nn.ModuleList(attentions)
        self.temp_attentions = nn.ModuleList(temp_attentions)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
573
        self.resolution_idx = resolution_idx
574
575
576
577
578
579
580
581
582
583
584
585

    def forward(
        self,
        hidden_states,
        res_hidden_states_tuple,
        temb=None,
        encoder_hidden_states=None,
        upsample_size=None,
        attention_mask=None,
        num_frames=1,
        cross_attention_kwargs=None,
    ):
586
587
588
589
590
591
592
        is_freeu_enabled = (
            getattr(self, "s1", None)
            and getattr(self, "s2", None)
            and getattr(self, "b1", None)
            and getattr(self, "b2", None)
        )

593
594
595
596
597
598
599
        # TODO(Patrick, William) - attention mask is not used
        for resnet, temp_conv, attn, temp_attn in zip(
            self.resnets, self.temp_convs, self.attentions, self.temp_attentions
        ):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
600
601
602
603
604
605
606
607
608
609
610
611
612

            # FreeU: Only operate on the first two stages
            if is_freeu_enabled:
                hidden_states, res_hidden_states = apply_freeu(
                    self.resolution_idx,
                    hidden_states,
                    res_hidden_states,
                    s1=self.s1,
                    s2=self.s2,
                    b1=self.b1,
                    b2=self.b2,
                )

613
614
615
616
617
618
619
620
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)
            hidden_states = temp_conv(hidden_states, num_frames=num_frames)
            hidden_states = attn(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                cross_attention_kwargs=cross_attention_kwargs,
621
622
                return_dict=False,
            )[0]
623
            hidden_states = temp_attn(
624
625
                hidden_states, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs, return_dict=False
            )[0]
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, upsample_size)

        return hidden_states


class UpBlock3D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
650
        resolution_idx=None,
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
    ):
        super().__init__()
        resnets = []
        temp_convs = []

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            temp_convs.append(
                TemporalConvLayer(
                    out_channels,
                    out_channels,
                    dropout=0.1,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.temp_convs = nn.ModuleList(temp_convs)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
691
        self.resolution_idx = resolution_idx
692
693

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, num_frames=1):
694
695
696
697
698
699
        is_freeu_enabled = (
            getattr(self, "s1", None)
            and getattr(self, "s2", None)
            and getattr(self, "b1", None)
            and getattr(self, "b2", None)
        )
700
701
702
703
        for resnet, temp_conv in zip(self.resnets, self.temp_convs):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
704
705
706
707
708
709
710
711
712
713
714
715
716

            # FreeU: Only operate on the first two stages
            if is_freeu_enabled:
                hidden_states, res_hidden_states = apply_freeu(
                    self.resolution_idx,
                    hidden_states,
                    res_hidden_states,
                    s1=self.s1,
                    s2=self.s2,
                    b1=self.b1,
                    b2=self.b2,
                )

717
718
719
720
721
722
723
724
725
726
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)
            hidden_states = temp_conv(hidden_states, num_frames=num_frames)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, upsample_size)

        return hidden_states