test_models_vae.py 4.33 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import torch

from diffusers import AutoencoderKL
21
from diffusers.modeling_utils import ModelMixin
22
from diffusers.utils import floats_tensor, torch_device
23
24
25
26

from .test_modeling_common import ModelTesterMixin


27
28
29
torch.backends.cuda.matmul.allow_tf32 = False


30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
class AutoencoderKLTests(ModelTesterMixin, unittest.TestCase):
    model_class = AutoencoderKL

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

        return {"sample": image}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": [32, 64],
            "in_channels": 3,
            "out_channels": 3,
            "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
            "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
            "latent_channels": 4,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass

    def test_from_pretrained_hub(self):
        model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
81
        model = model.to(torch_device)
82
83
        model.eval()

84
85
86
87
88
89
        # One-time warmup pass (see #372)
        if torch_device == "mps" and isinstance(model, ModelMixin):
            image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
            image = image.to(torch_device)
            with torch.no_grad():
                _ = model(image, sample_posterior=True).sample
90
91
92
93
94
95
96
97
98
            generator = torch.manual_seed(0)
        else:
            generator = torch.Generator(device=torch_device).manual_seed(0)

        image = torch.randn(
            1,
            model.config.in_channels,
            model.config.sample_size,
            model.config.sample_size,
Pedro Cuenca's avatar
Pedro Cuenca committed
99
            generator=torch.manual_seed(0),
100
        )
101
        image = image.to(torch_device)
102
        with torch.no_grad():
103
            output = model(image, sample_posterior=True, generator=generator).sample
104

105
        output_slice = output[0, -1, -3:, -3:].flatten().cpu()
106

107
108
        # Since the VAE Gaussian prior's generator is seeded on the appropriate device,
        # the expected output slices are not the same for CPU and GPU.
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        if torch_device == "mps":
            expected_output_slice = torch.tensor(
                [
                    -4.0078e-01,
                    -3.8323e-04,
                    -1.2681e-01,
                    -1.1462e-01,
                    2.0095e-01,
                    1.0893e-01,
                    -8.8247e-02,
                    -3.0361e-01,
                    -9.8644e-03,
                ]
            )
        elif torch_device == "cpu":
124
125
126
127
128
129
130
131
            expected_output_slice = torch.tensor(
                [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026]
            )
        else:
            expected_output_slice = torch.tensor(
                [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485]
            )

132
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-2))