test_amused.py 6.49 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Will Berman's avatar
Will Berman committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import AmusedPipeline, AmusedScheduler, UVit2DModel, VQModel
Dhruv Nair's avatar
Dhruv Nair committed
23
24
from diffusers.utils.testing_utils import (
    enable_full_determinism,
25
    require_torch_accelerator,
Dhruv Nair's avatar
Dhruv Nair committed
26
27
28
    slow,
    torch_device,
)
Will Berman's avatar
Will Berman committed
29
30
31
32
33
34
35
36
37
38
39
40

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class AmusedPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = AmusedPipeline
    params = TEXT_TO_IMAGE_PARAMS | {"encoder_hidden_states", "negative_encoder_hidden_states"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
Aryan's avatar
Aryan committed
41
    test_layerwise_casting = True
Aryan's avatar
Aryan committed
42
    test_group_offloading = True
Will Berman's avatar
Will Berman committed
43
44
45
46

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = UVit2DModel(
47
            hidden_size=8,
Will Berman's avatar
Will Berman committed
48
49
            use_bias=False,
            hidden_dropout=0.0,
50
            cond_embed_dim=8,
Will Berman's avatar
Will Berman committed
51
52
            micro_cond_encode_dim=2,
            micro_cond_embed_dim=10,
53
            encoder_hidden_size=8,
Will Berman's avatar
Will Berman committed
54
            vocab_size=32,
55
56
57
            codebook_size=8,
            in_channels=8,
            block_out_channels=8,
Will Berman's avatar
Will Berman committed
58
59
60
61
62
63
64
            num_res_blocks=1,
            downsample=True,
            upsample=True,
            block_num_heads=1,
            num_hidden_layers=1,
            num_attention_heads=1,
            attention_dropout=0.0,
65
            intermediate_size=8,
Will Berman's avatar
Will Berman committed
66
67
68
69
70
71
72
            layer_norm_eps=1e-06,
            ln_elementwise_affine=True,
        )
        scheduler = AmusedScheduler(mask_token_id=31)
        torch.manual_seed(0)
        vqvae = VQModel(
            act_fn="silu",
73
            block_out_channels=[8],
Dhruv Nair's avatar
Dhruv Nair committed
74
            down_block_types=["DownEncoderBlock2D"],
Will Berman's avatar
Will Berman committed
75
            in_channels=3,
76
77
78
79
            latent_channels=8,
            layers_per_block=1,
            norm_num_groups=8,
            num_vq_embeddings=8,
Will Berman's avatar
Will Berman committed
80
            out_channels=3,
81
            sample_size=8,
Dhruv Nair's avatar
Dhruv Nair committed
82
            up_block_types=["UpDecoderBlock2D"],
Will Berman's avatar
Will Berman committed
83
84
85
86
87
88
89
            mid_block_add_attention=False,
            lookup_from_codebook=True,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
90
91
            hidden_size=8,
            intermediate_size=8,
Will Berman's avatar
Will Berman committed
92
            layer_norm_eps=1e-05,
93
94
            num_attention_heads=1,
            num_hidden_layers=1,
Will Berman's avatar
Will Berman committed
95
96
            pad_token_id=1,
            vocab_size=1000,
97
            projection_dim=8,
Will Berman's avatar
Will Berman committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        )
        text_encoder = CLIPTextModelWithProjection(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        components = {
            "transformer": transformer,
            "scheduler": scheduler,
            "vqvae": vqvae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "output_type": "np",
            "height": 4,
            "width": 4,
        }
        return inputs

    def test_inference_batch_consistent(self, batch_sizes=[2]):
        self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False)

    @unittest.skip("aMUSEd does not support lists of generators")
    def test_inference_batch_single_identical(self):
        ...


@slow
134
@require_torch_accelerator
Will Berman's avatar
Will Berman committed
135
136
class AmusedPipelineSlowTests(unittest.TestCase):
    def test_amused_256(self):
137
        pipe = AmusedPipeline.from_pretrained("amused/amused-256")
Will Berman's avatar
Will Berman committed
138
139
140
141
        pipe.to(torch_device)
        image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
        image_slice = image[0, -3:, -3:, -1].flatten()
        assert image.shape == (1, 256, 256, 3)
Dhruv Nair's avatar
Dhruv Nair committed
142
143
        expected_slice = np.array([0.4011, 0.3992, 0.379, 0.3856, 0.3772, 0.3711, 0.3919, 0.385, 0.3625])
        assert np.abs(image_slice - expected_slice).max() < 0.003
Will Berman's avatar
Will Berman committed
144
145

    def test_amused_256_fp16(self):
146
        pipe = AmusedPipeline.from_pretrained("amused/amused-256", variant="fp16", torch_dtype=torch.float16)
Will Berman's avatar
Will Berman committed
147
148
149
150
151
        pipe.to(torch_device)
        image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
        image_slice = image[0, -3:, -3:, -1].flatten()
        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.0554, 0.05129, 0.0344, 0.0452, 0.0476, 0.0271, 0.0495, 0.0527, 0.0158])
Dhruv Nair's avatar
Dhruv Nair committed
152
        assert np.abs(image_slice - expected_slice).max() < 0.007
Will Berman's avatar
Will Berman committed
153
154

    def test_amused_512(self):
155
        pipe = AmusedPipeline.from_pretrained("amused/amused-512")
Will Berman's avatar
Will Berman committed
156
157
158
159
160
        pipe.to(torch_device)
        image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
Dhruv Nair's avatar
Dhruv Nair committed
161
162
        expected_slice = np.array([0.1199, 0.1171, 0.1229, 0.1188, 0.1210, 0.1147, 0.1260, 0.1346, 0.1152])
        assert np.abs(image_slice - expected_slice).max() < 0.003
Will Berman's avatar
Will Berman committed
163
164

    def test_amused_512_fp16(self):
165
        pipe = AmusedPipeline.from_pretrained("amused/amused-512", variant="fp16", torch_dtype=torch.float16)
Will Berman's avatar
Will Berman committed
166
167
168
169
170
        pipe.to(torch_device)
        image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
Dhruv Nair's avatar
Dhruv Nair committed
171
172
        expected_slice = np.array([0.1509, 0.1492, 0.1531, 0.1485, 0.1501, 0.1465, 0.1581, 0.1690, 0.1499])
        assert np.abs(image_slice - expected_slice).max() < 0.003