grad_tts_utils.py 9.49 KB
Newer Older
patil-suraj's avatar
patil-suraj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# tokenizer

import re

import torch
from transformers import PreTrainedTokenizer

try:
    from unidecode import unidecode
except:
    print("unidecode is not installed")
    pass

try:
    import inflect
except:
    print("inflect is not installed")
    pass


valid_symbols = [
  'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1', 'AE2', 'AH', 'AH0', 'AH1', 'AH2',
  'AO', 'AO0', 'AO1', 'AO2', 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0', 'AY1', 'AY2',
  'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER', 'ER0', 'ER1', 'ER2', 'EY',
  'EY0', 'EY1', 'EY2', 'F', 'G', 'HH', 'IH', 'IH0', 'IH1', 'IH2', 'IY', 'IY0', 'IY1',
  'IY2', 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OW0', 'OW1', 'OW2', 'OY', 'OY0',
  'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH', 'UH0', 'UH1', 'UH2', 'UW',
  'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH'
]

_valid_symbol_set = set(valid_symbols)

def intersperse(lst, item):
    # Adds blank symbol
    result = [item] * (len(lst) * 2 + 1)
    result[1::2] = lst
    return result


class CMUDict:
    def __init__(self, file_or_path, keep_ambiguous=True):
        if isinstance(file_or_path, str):
            with open(file_or_path, encoding='latin-1') as f:
                entries = _parse_cmudict(f)
        else:
            entries = _parse_cmudict(file_or_path)
        if not keep_ambiguous:
            entries = {word: pron for word, pron in entries.items() if len(pron) == 1}
        self._entries = entries

    def __len__(self):
        return len(self._entries)

    def lookup(self, word):
        return self._entries.get(word.upper())


_alt_re = re.compile(r'\([0-9]+\)')


def _parse_cmudict(file):
    cmudict = {}
    for line in file:
        if len(line) and (line[0] >= 'A' and line[0] <= 'Z' or line[0] == "'"):
            parts = line.split('  ')
            word = re.sub(_alt_re, '', parts[0])
            pronunciation = _get_pronunciation(parts[1])
            if pronunciation:
                if word in cmudict:
                    cmudict[word].append(pronunciation)
                else:
                    cmudict[word] = [pronunciation]
    return cmudict


def _get_pronunciation(s):
    parts = s.strip().split(' ')
    for part in parts:
        if part not in _valid_symbol_set:
            return None
    return ' '.join(parts)



_whitespace_re = re.compile(r'\s+')

_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
    ('mrs', 'misess'),
    ('mr', 'mister'),
    ('dr', 'doctor'),
    ('st', 'saint'),
    ('co', 'company'),
    ('jr', 'junior'),
    ('maj', 'major'),
    ('gen', 'general'),
    ('drs', 'doctors'),
    ('rev', 'reverend'),
    ('lt', 'lieutenant'),
    ('hon', 'honorable'),
    ('sgt', 'sergeant'),
    ('capt', 'captain'),
    ('esq', 'esquire'),
    ('ltd', 'limited'),
    ('col', 'colonel'),
    ('ft', 'fort'),
]]


def expand_abbreviations(text):
    for regex, replacement in _abbreviations:
        text = re.sub(regex, replacement, text)
    return text


def expand_numbers(text):
    return normalize_numbers(text)


def lowercase(text):
    return text.lower()


def collapse_whitespace(text):
    return re.sub(_whitespace_re, ' ', text)


def convert_to_ascii(text):
    return unidecode(text)


def basic_cleaners(text):
    text = lowercase(text)
    text = collapse_whitespace(text)
    return text


def transliteration_cleaners(text):
    text = convert_to_ascii(text)
    text = lowercase(text)
    text = collapse_whitespace(text)
    return text


def english_cleaners(text):
    text = convert_to_ascii(text)
    text = lowercase(text)
    text = expand_numbers(text)
    text = expand_abbreviations(text)
    text = collapse_whitespace(text)
    return text






_inflect = inflect.engine()
_comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
_decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
_pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
_dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
_ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
_number_re = re.compile(r'[0-9]+')


def _remove_commas(m):
    return m.group(1).replace(',', '')


def _expand_decimal_point(m):
    return m.group(1).replace('.', ' point ')


def _expand_dollars(m):
    match = m.group(1)
    parts = match.split('.')
    if len(parts) > 2:
        return match + ' dollars'
    dollars = int(parts[0]) if parts[0] else 0
    cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
    if dollars and cents:
        dollar_unit = 'dollar' if dollars == 1 else 'dollars'
        cent_unit = 'cent' if cents == 1 else 'cents'
        return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
    elif dollars:
        dollar_unit = 'dollar' if dollars == 1 else 'dollars'
        return '%s %s' % (dollars, dollar_unit)
    elif cents:
        cent_unit = 'cent' if cents == 1 else 'cents'
        return '%s %s' % (cents, cent_unit)
    else:
        return 'zero dollars'


def _expand_ordinal(m):
    return _inflect.number_to_words(m.group(0))


def _expand_number(m):
    num = int(m.group(0))
    if num > 1000 and num < 3000:
        if num == 2000:
            return 'two thousand'
        elif num > 2000 and num < 2010:
            return 'two thousand ' + _inflect.number_to_words(num % 100)
        elif num % 100 == 0:
            return _inflect.number_to_words(num // 100) + ' hundred'
        else:
            return _inflect.number_to_words(num, andword='', zero='oh', 
                                            group=2).replace(', ', ' ')
    else:
        return _inflect.number_to_words(num, andword='')


def normalize_numbers(text):
    text = re.sub(_comma_number_re, _remove_commas, text)
    text = re.sub(_pounds_re, r'\1 pounds', text)
    text = re.sub(_dollars_re, _expand_dollars, text)
    text = re.sub(_decimal_number_re, _expand_decimal_point, text)
    text = re.sub(_ordinal_re, _expand_ordinal, text)
    text = re.sub(_number_re, _expand_number, text)
    return text

""" from https://github.com/keithito/tacotron """


_pad        = '_'
_punctuation = '!\'(),.:;? '
_special = '-'
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'

# Prepend "@" to ARPAbet symbols to ensure uniqueness:
_arpabet = ['@' + s for s in valid_symbols]

# Export all symbols:
symbols = [_pad] + list(_special) + list(_punctuation) + list(_letters) + _arpabet


_symbol_to_id = {s: i for i, s in enumerate(symbols)}
_id_to_symbol = {i: s for i, s in enumerate(symbols)}

_curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)')


def get_arpabet(word, dictionary):
    word_arpabet = dictionary.lookup(word)
    if word_arpabet is not None:
        return "{" + word_arpabet[0] + "}"
    else:
        return word


def text_to_sequence(text, cleaner_names=[english_cleaners], dictionary=None):
    '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.

    The text can optionally have ARPAbet sequences enclosed in curly braces embedded
    in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street."

    Args:
      text: string to convert to a sequence
      cleaner_names: names of the cleaner functions to run the text through
      dictionary: arpabet class with arpabet dictionary

    Returns:
      List of integers corresponding to the symbols in the text
    '''
    sequence = []
    space = _symbols_to_sequence(' ')
    # Check for curly braces and treat their contents as ARPAbet:
    while len(text):
        m = _curly_re.match(text)
        if not m:
            clean_text = _clean_text(text, cleaner_names)
            if dictionary is not None:
                clean_text = [get_arpabet(w, dictionary) for w in clean_text.split(" ")]
                for i in range(len(clean_text)):
                    t = clean_text[i]
                    if t.startswith("{"):
                        sequence += _arpabet_to_sequence(t[1:-1])
                    else:
                        sequence += _symbols_to_sequence(t)
                    sequence += space
            else:
                sequence += _symbols_to_sequence(clean_text)
            break
        sequence += _symbols_to_sequence(_clean_text(m.group(1), cleaner_names))
        sequence += _arpabet_to_sequence(m.group(2))
        text = m.group(3)
  
    # remove trailing space
    if dictionary is not None:
        sequence = sequence[:-1] if sequence[-1] == space[0] else sequence
    return sequence


def sequence_to_text(sequence):
    '''Converts a sequence of IDs back to a string'''
    result = ''
    for symbol_id in sequence:
        if symbol_id in _id_to_symbol:
            s = _id_to_symbol[symbol_id]
            # Enclose ARPAbet back in curly braces:
            if len(s) > 1 and s[0] == '@':
                s = '{%s}' % s[1:]
            result += s
    return result.replace('}{', ' ')


def _clean_text(text, cleaner_names):
    for cleaner in cleaner_names:
        text = cleaner(text)
    return text


def _symbols_to_sequence(symbols):
    return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)]


def _arpabet_to_sequence(text):
    return _symbols_to_sequence(['@' + s for s in text.split()])


def _should_keep_symbol(s):
    return s in _symbol_to_id and s != '_' and s != '~'


VOCAB_FILES_NAMES = {
    "dict_file": "merges.txt",
}

class GradTTSTokenizer(PreTrainedTokenizer):
    vocab_files_names = VOCAB_FILES_NAMES
    
    def __init__(self, dict_file, **kwargs):
        super().__init__(**kwargs)
        self.cmu = CMUDict(dict_file)
    
    def __call__(self, text):
        x = torch.LongTensor(intersperse(text_to_sequence(text, dictionary=self.cmu), len(symbols)))[None]
        x_lengths = torch.LongTensor([x.shape[-1]])
        return x.shape, x_lengths