gaussian_ddpm.py 3.41 KB
Newer Older
Patrick von Platen's avatar
improve  
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
anton-l's avatar
anton-l committed
14
import math
Patrick von Platen's avatar
Patrick von Platen committed
15
16

import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
18
from torch import nn

Patrick von Platen's avatar
Patrick von Platen committed
19
from ..configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
20
from .schedulers_utils import betas_for_alpha_bar, linear_beta_schedule
Patrick von Platen's avatar
improve  
Patrick von Platen committed
21
22
23
24
25


SAMPLING_CONFIG_NAME = "scheduler_config.json"


Patrick von Platen's avatar
Patrick von Platen committed
26
class GaussianDDPMScheduler(nn.Module, ConfigMixin):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

    config_name = SAMPLING_CONFIG_NAME

    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        variance_type="fixed_small",
    ):
        super().__init__()
        self.register(
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
            variance_type=variance_type,
        )
        self.num_timesteps = int(timesteps)

        if beta_schedule == "linear":
            betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
anton-l's avatar
anton-l committed
50
51
52
53
54
55
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
            betas = betas_for_alpha_bar(
                timesteps,
                lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
            )
Patrick von Platen's avatar
improve  
Patrick von Platen committed
56
57
58
59
60
61
62
63
64
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        alphas = 1.0 - betas
        alphas_cumprod = torch.cumprod(alphas, axis=0)
        alphas_cumprod_prev = torch.nn.functional.pad(alphas_cumprod[:-1], (1, 0), value=1.0)

        variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)

Patrick von Platen's avatar
Patrick von Platen committed
65
66
67
        # TODO(PVP) - check how much of these is actually necessary!
        # LDM only uses "fixed_small"; glide seems to use a weird mix of the two, ...
        # https://github.com/openai/glide-text2im/blob/69b530740eb6cef69442d6180579ef5ba9ef063e/glide_text2im/gaussian_diffusion.py#L246
Patrick von Platen's avatar
improve  
Patrick von Platen committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        if variance_type == "fixed_small":
            log_variance = torch.log(variance.clamp(min=1e-20))
        elif variance_type == "fixed_large":
            log_variance = torch.log(torch.cat([variance[1:2], betas[1:]], dim=0))

        self.register_buffer("betas", betas.to(torch.float32))
        self.register_buffer("alphas", alphas.to(torch.float32))
        self.register_buffer("alphas_cumprod", alphas_cumprod.to(torch.float32))

        self.register_buffer("log_variance", log_variance.to(torch.float32))

    def get_alpha(self, time_step):
        return self.alphas[time_step]

    def get_beta(self, time_step):
        return self.betas[time_step]

    def get_alpha_prod(self, time_step):
        if time_step < 0:
            return torch.tensor(1.0)
        return self.alphas_cumprod[time_step]

    def sample_noise(self, shape, device, generator=None):
        # always sample on CPU to be deterministic
        return torch.randn(shape, generator=generator).to(device)

    def __len__(self):
        return self.num_timesteps