pipeline_wuerstchen.py 20.3 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
Kashif Rasul's avatar
Kashif Rasul committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from typing import Callable, Dict, List, Optional, Union
Kashif Rasul's avatar
Kashif Rasul committed
16
17
18
19
20
21

import numpy as np
import torch
from transformers import CLIPTextModel, CLIPTokenizer

from ...schedulers import DDPMWuerstchenScheduler
hlky's avatar
hlky committed
22
from ...utils import deprecate, is_torch_xla_available, logging, replace_example_docstring
Dhruv Nair's avatar
Dhruv Nair committed
23
from ...utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
24
25
26
27
28
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from .modeling_paella_vq_model import PaellaVQModel
from .modeling_wuerstchen_diffnext import WuerstchenDiffNeXt


hlky's avatar
hlky committed
29
30
31
32
33
34
35
if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

Kashif Rasul's avatar
Kashif Rasul committed
36
37
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

hlky's avatar
hlky committed
38

Kashif Rasul's avatar
Kashif Rasul committed
39
40
41
42
43
44
45
EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import WuerstchenPriorPipeline, WuerstchenDecoderPipeline

        >>> prior_pipe = WuerstchenPriorPipeline.from_pretrained(
Kashif Rasul's avatar
Kashif Rasul committed
46
        ...     "warp-ai/wuerstchen-prior", torch_dtype=torch.float16
Kashif Rasul's avatar
Kashif Rasul committed
47
        ... ).to("cuda")
Kashif Rasul's avatar
Kashif Rasul committed
48
49
50
        >>> gen_pipe = WuerstchenDecoderPipeline.from_pretrain("warp-ai/wuerstchen", torch_dtype=torch.float16).to(
        ...     "cuda"
        ... )
Kashif Rasul's avatar
Kashif Rasul committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

        >>> prompt = "an image of a shiba inu, donning a spacesuit and helmet"
        >>> prior_output = pipe(prompt)
        >>> images = gen_pipe(prior_output.image_embeddings, prompt=prompt)
        ```
"""


class WuerstchenDecoderPipeline(DiffusionPipeline):
    """
    Pipeline for generating images from the Wuerstchen model.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        tokenizer (`CLIPTokenizer`):
            The CLIP tokenizer.
        text_encoder (`CLIPTextModel`):
            The CLIP text encoder.
        decoder ([`WuerstchenDiffNeXt`]):
            The WuerstchenDiffNeXt unet decoder.
        vqgan ([`PaellaVQModel`]):
            The VQGAN model.
        scheduler ([`DDPMWuerstchenScheduler`]):
            A scheduler to be used in combination with `prior` to generate image embedding.
        latent_dim_scale (float, `optional`, defaults to 10.67):
            Multiplier to determine the VQ latent space size from the image embeddings. If the image embeddings are
            height=24 and width=24, the VQ latent shape needs to be height=int(24*10.67)=256 and
            width=int(24*10.67)=256 in order to match the training conditions.
    """

83
    model_cpu_offload_seq = "text_encoder->decoder->vqgan"
84
85
86
87
88
89
    _callback_tensor_inputs = [
        "latents",
        "text_encoder_hidden_states",
        "negative_prompt_embeds",
        "image_embeddings",
    ]
90

Kashif Rasul's avatar
Kashif Rasul committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    def __init__(
        self,
        tokenizer: CLIPTokenizer,
        text_encoder: CLIPTextModel,
        decoder: WuerstchenDiffNeXt,
        scheduler: DDPMWuerstchenScheduler,
        vqgan: PaellaVQModel,
        latent_dim_scale: float = 10.67,
    ) -> None:
        super().__init__()
        self.register_modules(
            tokenizer=tokenizer,
            text_encoder=text_encoder,
            decoder=decoder,
            scheduler=scheduler,
            vqgan=vqgan,
        )
        self.register_to_config(latent_dim_scale=latent_dim_scale)

    # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
    def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        latents = latents * scheduler.init_noise_sigma
        return latents

    def encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
    ):
        batch_size = len(prompt) if isinstance(prompt, list) else 1
        # get prompt text embeddings
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
        attention_mask = text_inputs.attention_mask

        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )
            text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
            attention_mask = attention_mask[:, : self.tokenizer.model_max_length]

        text_encoder_output = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask.to(device))
        text_encoder_hidden_states = text_encoder_output.last_hidden_state
        text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)

        uncond_text_encoder_hidden_states = None
        if do_classifier_free_guidance:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            negative_prompt_embeds_text_encoder_output = self.text_encoder(
                uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device)
            )

            uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = uncond_text_encoder_hidden_states.shape[1]
            uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
            uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
                batch_size * num_images_per_prompt, seq_len, -1
            )
            # done duplicates

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
        return text_encoder_hidden_states, uncond_text_encoder_hidden_states

204
205
206
207
208
209
210
211
212
213
214
215
    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def num_timesteps(self):
        return self._num_timesteps

Kashif Rasul's avatar
Kashif Rasul committed
216
217
218
219
    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
220
        image_embeddings: Union[torch.Tensor, List[torch.Tensor]],
Kashif Rasul's avatar
Kashif Rasul committed
221
222
223
224
225
226
227
        prompt: Union[str, List[str]] = None,
        num_inference_steps: int = 12,
        timesteps: Optional[List[float]] = None,
        guidance_scale: float = 0.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: int = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
228
        latents: Optional[torch.Tensor] = None,
Kashif Rasul's avatar
Kashif Rasul committed
229
230
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
231
232
233
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
Kashif Rasul's avatar
Kashif Rasul committed
234
235
236
237
238
    ):
        """
        Function invoked when calling the pipeline for generation.

        Args:
239
            image_embedding (`torch.Tensor` or `List[torch.Tensor]`):
Kashif Rasul's avatar
Kashif Rasul committed
240
241
242
                Image Embeddings either extracted from an image or generated by a Prior Model.
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
243
            num_inference_steps (`int`, *optional*, defaults to 12):
Kashif Rasul's avatar
Kashif Rasul committed
244
245
246
247
248
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
                timesteps are used. Must be in descending order.
249
            guidance_scale (`float`, *optional*, defaults to 0.0):
Kashif Rasul's avatar
Kashif Rasul committed
250
251
252
253
254
255
256
257
258
259
260
261
262
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting
                `decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely
                linked to the text `prompt`, usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `decoder_guidance_scale` is less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
263
            latents (`torch.Tensor`, *optional*):
Kashif Rasul's avatar
Kashif Rasul committed
264
265
266
267
268
269
270
271
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
                (`np.array`) or `"pt"` (`torch.Tensor`).
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
272
273
274
275
276
277
278
279
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
Steven Liu's avatar
Steven Liu committed
280
                `._callback_tensor_inputs` attribute of your pipeline class.
Kashif Rasul's avatar
Kashif Rasul committed
281
282
283
284
285
286
287
288
289

        Examples:

        Returns:
            [`~pipelines.ImagePipelineOutput`] or `tuple` [`~pipelines.ImagePipelineOutput`] if `return_dict` is True,
            otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image
            embeddings.
        """

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

Kashif Rasul's avatar
Kashif Rasul committed
313
314
315
        # 0. Define commonly used variables
        device = self._execution_device
        dtype = self.decoder.dtype
316
        self._guidance_scale = guidance_scale
Kashif Rasul's avatar
Kashif Rasul committed
317
318

        # 1. Check inputs. Raise error if not correct
319
320
321
322
323
324
        if not isinstance(prompt, list):
            if isinstance(prompt, str):
                prompt = [prompt]
            else:
                raise TypeError(f"'prompt' must be of type 'list' or 'str', but got {type(prompt)}.")

325
        if self.do_classifier_free_guidance:
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
            if negative_prompt is not None and not isinstance(negative_prompt, list):
                if isinstance(negative_prompt, str):
                    negative_prompt = [negative_prompt]
                else:
                    raise TypeError(
                        f"'negative_prompt' must be of type 'list' or 'str', but got {type(negative_prompt)}."
                    )

        if isinstance(image_embeddings, list):
            image_embeddings = torch.cat(image_embeddings, dim=0)
        if isinstance(image_embeddings, np.ndarray):
            image_embeddings = torch.Tensor(image_embeddings, device=device).to(dtype=dtype)
        if not isinstance(image_embeddings, torch.Tensor):
            raise TypeError(
                f"'image_embeddings' must be of type 'torch.Tensor' or 'np.array', but got {type(image_embeddings)}."
            )

        if not isinstance(num_inference_steps, int):
            raise TypeError(
                f"'num_inference_steps' must be of type 'int', but got {type(num_inference_steps)}\
                           In Case you want to provide explicit timesteps, please use the 'timesteps' argument."
            )
Kashif Rasul's avatar
Kashif Rasul committed
348
349
350

        # 2. Encode caption
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
351
352
353
            prompt,
            device,
            image_embeddings.size(0) * num_images_per_prompt,
354
            self.do_classifier_free_guidance,
355
            negative_prompt,
Kashif Rasul's avatar
Kashif Rasul committed
356
357
358
359
        )
        text_encoder_hidden_states = (
            torch.cat([prompt_embeds, negative_prompt_embeds]) if negative_prompt_embeds is not None else prompt_embeds
        )
360
361
362
363
364
        effnet = (
            torch.cat([image_embeddings, torch.zeros_like(image_embeddings)])
            if self.do_classifier_free_guidance
            else image_embeddings
        )
Kashif Rasul's avatar
Kashif Rasul committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

        # 3. Determine latent shape of latents
        latent_height = int(image_embeddings.size(2) * self.config.latent_dim_scale)
        latent_width = int(image_embeddings.size(3) * self.config.latent_dim_scale)
        latent_features_shape = (image_embeddings.size(0) * num_images_per_prompt, 4, latent_height, latent_width)

        # 4. Prepare and set timesteps
        if timesteps is not None:
            self.scheduler.set_timesteps(timesteps=timesteps, device=device)
            timesteps = self.scheduler.timesteps
            num_inference_steps = len(timesteps)
        else:
            self.scheduler.set_timesteps(num_inference_steps, device=device)
            timesteps = self.scheduler.timesteps

        # 5. Prepare latents
        latents = self.prepare_latents(latent_features_shape, dtype, device, generator, latents, self.scheduler)

        # 6. Run denoising loop
384
        self._num_timesteps = len(timesteps[:-1])
385
        for i, t in enumerate(self.progress_bar(timesteps[:-1])):
Kashif Rasul's avatar
Kashif Rasul committed
386
387
388
            ratio = t.expand(latents.size(0)).to(dtype)
            # 7. Denoise latents
            predicted_latents = self.decoder(
389
390
                torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents,
                r=torch.cat([ratio] * 2) if self.do_classifier_free_guidance else ratio,
Kashif Rasul's avatar
Kashif Rasul committed
391
392
393
394
395
                effnet=effnet,
                clip=text_encoder_hidden_states,
            )

            # 8. Check for classifier free guidance and apply it
396
            if self.do_classifier_free_guidance:
Kashif Rasul's avatar
Kashif Rasul committed
397
                predicted_latents_text, predicted_latents_uncond = predicted_latents.chunk(2)
398
                predicted_latents = torch.lerp(predicted_latents_uncond, predicted_latents_text, self.guidance_scale)
Kashif Rasul's avatar
Kashif Rasul committed
399
400
401
402
403
404
405
406
407

            # 9. Renoise latents to next timestep
            latents = self.scheduler.step(
                model_output=predicted_latents,
                timestep=ratio,
                sample=latents,
                generator=generator,
            ).prev_sample

408
409
410
411
412
413
414
415
416
417
418
419
            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                image_embeddings = callback_outputs.pop("image_embeddings", image_embeddings)
                text_encoder_hidden_states = callback_outputs.pop(
                    "text_encoder_hidden_states", text_encoder_hidden_states
                )

420
            if callback is not None and i % callback_steps == 0:
421
422
                step_idx = i // getattr(self.scheduler, "order", 1)
                callback(step_idx, t, latents)
423

hlky's avatar
hlky committed
424
425
426
            if XLA_AVAILABLE:
                xm.mark_step()

427
428
429
430
431
432
433
434
435
436
        if output_type not in ["pt", "np", "pil", "latent"]:
            raise ValueError(
                f"Only the output types `pt`, `np`, `pil` and `latent` are supported not output_type={output_type}"
            )

        if not output_type == "latent":
            # 10. Scale and decode the image latents with vq-vae
            latents = self.vqgan.config.scale_factor * latents
            images = self.vqgan.decode(latents).sample.clamp(0, 1)
            if output_type == "np":
437
                images = images.permute(0, 2, 3, 1).cpu().float().numpy()
438
            elif output_type == "pil":
439
                images = images.permute(0, 2, 3, 1).cpu().float().numpy()
440
441
442
                images = self.numpy_to_pil(images)
        else:
            images = latents
Kashif Rasul's avatar
Kashif Rasul committed
443

444
445
446
        # Offload all models
        self.maybe_free_model_hooks()

Kashif Rasul's avatar
Kashif Rasul committed
447
448
449
        if not return_dict:
            return images
        return ImagePipelineOutput(images)