image_processor.py 13 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
16
from typing import List, Optional, Union
YiYi Xu's avatar
YiYi Xu committed
17
18
19
20
21
22
23

import numpy as np
import PIL
import torch
from PIL import Image

from .configuration_utils import ConfigMixin, register_to_config
24
from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
YiYi Xu's avatar
YiYi Xu committed
25
26
27
28
29
30
31
32


class VaeImageProcessor(ConfigMixin):
    """
    Image Processor for VAE

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
33
34
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
            `height` and `width` arguments from `preprocess` method
YiYi Xu's avatar
YiYi Xu committed
35
36
37
38
39
40
41
        vae_scale_factor (`int`, *optional*, defaults to `8`):
            VAE scale factor. If `do_resize` is True, the image will be automatically resized to multiples of this
            factor.
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image to [-1,1]
42
43
        do_convert_rgb (`bool`, *optional*, defaults to be `False`):
            Whether to convert the images to RGB format.
YiYi Xu's avatar
YiYi Xu committed
44
45
46
47
48
49
50
51
52
53
54
    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = True,
55
        do_convert_rgb: bool = False,
YiYi Xu's avatar
YiYi Xu committed
56
57
58
59
    ):
        super().__init__()

    @staticmethod
60
    def numpy_to_pil(images: np.ndarray) -> PIL.Image.Image:
YiYi Xu's avatar
YiYi Xu committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]

        return pil_images

    @staticmethod
76
77
78
79
80
81
82
83
84
85
86
87
88
    def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
        """
        Convert a PIL image or a list of PIL images to numpy arrays.
        """
        if not isinstance(images, list):
            images = [images]
        images = [np.array(image).astype(np.float32) / 255.0 for image in images]
        images = np.stack(images, axis=0)

        return images

    @staticmethod
    def numpy_to_pt(images: np.ndarray) -> torch.FloatTensor:
YiYi Xu's avatar
YiYi Xu committed
89
90
91
92
93
94
95
96
97
98
        """
        Convert a numpy image to a pytorch tensor
        """
        if images.ndim == 3:
            images = images[..., None]

        images = torch.from_numpy(images.transpose(0, 3, 1, 2))
        return images

    @staticmethod
99
    def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray:
YiYi Xu's avatar
YiYi Xu committed
100
        """
101
        Convert a pytorch tensor to a numpy image
YiYi Xu's avatar
YiYi Xu committed
102
103
104
105
106
107
108
109
110
111
112
        """
        images = images.cpu().permute(0, 2, 3, 1).float().numpy()
        return images

    @staticmethod
    def normalize(images):
        """
        Normalize an image array to [-1,1]
        """
        return 2.0 * images - 1.0

113
114
115
116
117
118
119
    @staticmethod
    def denormalize(images):
        """
        Denormalize an image array to [0,1]
        """
        return (images / 2 + 0.5).clamp(0, 1)

120
121
122
123
124
125
126
127
128
129
130
131
132
133
    @staticmethod
    def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
        """
        Converts an image to RGB format.
        """
        image = image.convert("RGB")
        return image

    def resize(
        self,
        image: PIL.Image.Image,
        height: Optional[int] = None,
        width: Optional[int] = None,
    ) -> PIL.Image.Image:
YiYi Xu's avatar
YiYi Xu committed
134
135
136
        """
        Resize a PIL image. Both height and width will be downscaled to the next integer multiple of `vae_scale_factor`
        """
137
138
139
140
141
142
143
144
145
146
        if height is None:
            height = image.height
        if width is None:
            width = image.width

        width, height = (
            x - x % self.config.vae_scale_factor for x in (width, height)
        )  # resize to integer multiple of vae_scale_factor
        image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample])
        return image
YiYi Xu's avatar
YiYi Xu committed
147
148
149
150

    def preprocess(
        self,
        image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
151
152
        height: Optional[int] = None,
        width: Optional[int] = None,
YiYi Xu's avatar
YiYi Xu committed
153
154
155
156
157
158
159
160
161
162
163
164
165
    ) -> torch.Tensor:
        """
        Preprocess the image input, accepted formats are PIL images, numpy arrays or pytorch tensors"
        """
        supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
        if isinstance(image, supported_formats):
            image = [image]
        elif not (isinstance(image, list) and all(isinstance(i, supported_formats) for i in image)):
            raise ValueError(
                f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support {', '.join(supported_formats)}"
            )

        if isinstance(image[0], PIL.Image.Image):
166
167
            if self.config.do_convert_rgb:
                image = [self.convert_to_rgb(i) for i in image]
168
            if self.config.do_resize:
169
170
                image = [self.resize(i, height, width) for i in image]
            image = self.pil_to_numpy(image)  # to np
YiYi Xu's avatar
YiYi Xu committed
171
172
173
174
175
176
            image = self.numpy_to_pt(image)  # to pt

        elif isinstance(image[0], np.ndarray):
            image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
            image = self.numpy_to_pt(image)
            _, _, height, width = image.shape
177
178
179
            if self.config.do_resize and (
                height % self.config.vae_scale_factor != 0 or width % self.config.vae_scale_factor != 0
            ):
YiYi Xu's avatar
YiYi Xu committed
180
                raise ValueError(
181
                    f"Currently we only support resizing for PIL image - please resize your numpy array to be divisible by {self.config.vae_scale_factor}"
YiYi Xu's avatar
YiYi Xu committed
182
183
184
185
186
                    f"currently the sizes are {height} and {width}. You can also pass a PIL image instead to use resize option in VAEImageProcessor"
                )

        elif isinstance(image[0], torch.Tensor):
            image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
187
188
189
190
191
192
            _, channel, height, width = image.shape

            # don't need any preprocess if the image is latents
            if channel == 4:
                return image

193
194
195
            if self.config.do_resize and (
                height % self.config.vae_scale_factor != 0 or width % self.config.vae_scale_factor != 0
            ):
YiYi Xu's avatar
YiYi Xu committed
196
                raise ValueError(
197
                    f"Currently we only support resizing for PIL image - please resize your pytorch tensor to be divisible by {self.config.vae_scale_factor}"
YiYi Xu's avatar
YiYi Xu committed
198
199
200
201
                    f"currently the sizes are {height} and {width}. You can also pass a PIL image instead to use resize option in VAEImageProcessor"
                )

        # expected range [0,1], normalize to [-1,1]
202
        do_normalize = self.config.do_normalize
YiYi Xu's avatar
YiYi Xu committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        if image.min() < 0:
            warnings.warn(
                "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
                f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
                FutureWarning,
            )
            do_normalize = False

        if do_normalize:
            image = self.normalize(image)

        return image

    def postprocess(
        self,
218
        image: torch.FloatTensor,
YiYi Xu's avatar
YiYi Xu committed
219
        output_type: str = "pil",
220
        do_denormalize: Optional[List[bool]] = None,
YiYi Xu's avatar
YiYi Xu committed
221
    ):
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        if not isinstance(image, torch.Tensor):
            raise ValueError(
                f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
            )
        if output_type not in ["latent", "pt", "np", "pil"]:
            deprecation_message = (
                f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
                "`pil`, `np`, `pt`, `latent`"
            )
            deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
            output_type = "np"

        if output_type == "latent":
            return image

        if do_denormalize is None:
            do_denormalize = [self.config.do_normalize] * image.shape[0]

        image = torch.stack(
            [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
        )

        if output_type == "pt":
YiYi Xu's avatar
YiYi Xu committed
245
246
247
248
249
250
            return image

        image = self.pt_to_numpy(image)

        if output_type == "np":
            return image
251
252

        if output_type == "pil":
YiYi Xu's avatar
YiYi Xu committed
253
            return self.numpy_to_pil(image)
estelleafl's avatar
estelleafl committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359


class VaeImageProcessorLDM3D(VaeImageProcessor):
    """
    Image Processor for VAE LDM3D.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
        vae_scale_factor (`int`, *optional*, defaults to `8`):
            VAE scale factor. If `do_resize` is True, the image will be automatically resized to multiples of this
            factor.
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image to [-1,1]
    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = True,
    ):
        super().__init__()

    @staticmethod
    def numpy_to_pil(images):
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image[:, :, :3]) for image in images]

        return pil_images

    @staticmethod
    def rgblike_to_depthmap(image):
        """
        Args:
            image: RGB-like depth image

        Returns: depth map

        """
        return image[:, :, 1] * 2**8 + image[:, :, 2]

    def numpy_to_depth(self, images):
        """
        Convert a numpy depth image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            raise Exception("Not supported")
        else:
            pil_images = [Image.fromarray(self.rgblike_to_depthmap(image[:, :, 3:]), mode="I;16") for image in images]

        return pil_images

    def postprocess(
        self,
        image: torch.FloatTensor,
        output_type: str = "pil",
        do_denormalize: Optional[List[bool]] = None,
    ):
        if not isinstance(image, torch.Tensor):
            raise ValueError(
                f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
            )
        if output_type not in ["latent", "pt", "np", "pil"]:
            deprecation_message = (
                f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
                "`pil`, `np`, `pt`, `latent`"
            )
            deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
            output_type = "np"

        if do_denormalize is None:
            do_denormalize = [self.config.do_normalize] * image.shape[0]

        image = torch.stack(
            [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
        )

        image = self.pt_to_numpy(image)

        if output_type == "np":
            return image[:, :, :, :3], np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0)

        if output_type == "pil":
            return self.numpy_to_pil(image), self.numpy_to_depth(image)
        else:
            raise Exception(f"This type {output_type} is not supported")