pipeline_repaint.py 9.8 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 ETH Zurich Computer Vision Lab and The HuggingFace Team. All rights reserved.
Revist's avatar
Revist committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


16
from typing import List, Optional, Tuple, Union
Revist's avatar
Revist committed
17
18
19

import numpy as np
import PIL
20
import torch
Revist's avatar
Revist committed
21
22
23

from ...models import UNet2DModel
from ...schedulers import RePaintScheduler
Dhruv Nair's avatar
Dhruv Nair committed
24
25
from ...utils import PIL_INTERPOLATION, deprecate, logging
from ...utils.torch_utils import randn_tensor
26
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
Revist's avatar
Revist committed
27
28


29
30
31
32
33
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess
def _preprocess_image(image: Union[List, PIL.Image.Image, torch.Tensor]):
34
35
    deprecation_message = "The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead"
    deprecate("preprocess", "1.0.0", deprecation_message, standard_warn=False)
36
37
38
39
40
41
42
    if isinstance(image, torch.Tensor):
        return image
    elif isinstance(image, PIL.Image.Image):
        image = [image]

    if isinstance(image[0], PIL.Image.Image):
        w, h = image[0].size
43
        w, h = (x - x % 8 for x in (w, h))  # resize to integer multiple of 8
44
45
46
47
48
49
50
51
52

        image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
        image = np.concatenate(image, axis=0)
        image = np.array(image).astype(np.float32) / 255.0
        image = image.transpose(0, 3, 1, 2)
        image = 2.0 * image - 1.0
        image = torch.from_numpy(image)
    elif isinstance(image[0], torch.Tensor):
        image = torch.cat(image, dim=0)
Revist's avatar
Revist committed
53
54
55
    return image


56
57
58
59
60
61
62
63
def _preprocess_mask(mask: Union[List, PIL.Image.Image, torch.Tensor]):
    if isinstance(mask, torch.Tensor):
        return mask
    elif isinstance(mask, PIL.Image.Image):
        mask = [mask]

    if isinstance(mask[0], PIL.Image.Image):
        w, h = mask[0].size
64
        w, h = (x - x % 32 for x in (w, h))  # resize to integer multiple of 32
65
66
67
68
69
70
71
72
        mask = [np.array(m.convert("L").resize((w, h), resample=PIL_INTERPOLATION["nearest"]))[None, :] for m in mask]
        mask = np.concatenate(mask, axis=0)
        mask = mask.astype(np.float32) / 255.0
        mask[mask < 0.5] = 0
        mask[mask >= 0.5] = 1
        mask = torch.from_numpy(mask)
    elif isinstance(mask[0], torch.Tensor):
        mask = torch.cat(mask, dim=0)
Revist's avatar
Revist committed
73
74
75
76
    return mask


class RePaintPipeline(DiffusionPipeline):
77
78
79
80
81
82
83
84
85
86
87
88
89
    r"""
    Pipeline for image inpainting using RePaint.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    Parameters:
        unet ([`UNet2DModel`]):
            A `UNet2DModel` to denoise the encoded image latents.
        scheduler ([`RePaintScheduler`]):
            A `RePaintScheduler` to be used in combination with `unet` to denoise the encoded image.
    """

Revist's avatar
Revist committed
90
91
    unet: UNet2DModel
    scheduler: RePaintScheduler
92
    model_cpu_offload_seq = "unet"
Revist's avatar
Revist committed
93
94
95
96
97
98
99
100

    def __init__(self, unet, scheduler):
        super().__init__()
        self.register_modules(unet=unet, scheduler=scheduler)

    @torch.no_grad()
    def __call__(
        self,
101
102
        image: Union[torch.Tensor, PIL.Image.Image],
        mask_image: Union[torch.Tensor, PIL.Image.Image],
Revist's avatar
Revist committed
103
104
105
106
        num_inference_steps: int = 250,
        eta: float = 0.0,
        jump_length: int = 10,
        jump_n_sample: int = 10,
107
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
Revist's avatar
Revist committed
108
109
110
111
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
    ) -> Union[ImagePipelineOutput, Tuple]:
        r"""
112
113
        The call function to the pipeline for generation.

Revist's avatar
Revist committed
114
        Args:
115
            image (`torch.FloatTensor` or `PIL.Image.Image`):
Revist's avatar
Revist committed
116
117
                The original image to inpaint on.
            mask_image (`torch.FloatTensor` or `PIL.Image.Image`):
118
                The mask_image where 0.0 define which part of the original image to inpaint.
Revist's avatar
Revist committed
119
120
121
122
            num_inference_steps (`int`, *optional*, defaults to 1000):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            eta (`float`):
123
124
                The weight of the added noise in a diffusion step. Its value is between 0.0 and 1.0; 0.0 corresponds to
                DDIM and 1.0 is the DDPM scheduler.
Revist's avatar
Revist committed
125
126
            jump_length (`int`, *optional*, defaults to 10):
                The number of steps taken forward in time before going backward in time for a single jump ("j" in
127
                RePaint paper). Take a look at Figure 9 and 10 in the [paper](https://arxiv.org/pdf/2201.09865.pdf).
Revist's avatar
Revist committed
128
            jump_n_sample (`int`, *optional*, defaults to 10):
129
130
                The number of times to make a forward time jump for a given chosen time sample. Take a look at Figure 9
                and 10 in the [paper](https://arxiv.org/pdf/2201.09865.pdf).
Revist's avatar
Revist committed
131
            generator (`torch.Generator`, *optional*):
132
133
134
135
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            output_type (`str`, `optional`, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
Revist's avatar
Revist committed
136
            return_dict (`bool`, *optional*, defaults to `True`):
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
                Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple.

        Example:

        ```py
        >>> from io import BytesIO
        >>> import torch
        >>> import PIL
        >>> import requests
        >>> from diffusers import RePaintPipeline, RePaintScheduler


        >>> def download_image(url):
        ...     response = requests.get(url)
        ...     return PIL.Image.open(BytesIO(response.content)).convert("RGB")


        >>> img_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/celeba_hq_256.png"
        >>> mask_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png"

        >>> # Load the original image and the mask as PIL images
        >>> original_image = download_image(img_url).resize((256, 256))
        >>> mask_image = download_image(mask_url).resize((256, 256))

        >>> # Load the RePaint scheduler and pipeline based on a pretrained DDPM model
        >>> scheduler = RePaintScheduler.from_pretrained("google/ddpm-ema-celebahq-256")
        >>> pipe = RePaintPipeline.from_pretrained("google/ddpm-ema-celebahq-256", scheduler=scheduler)
        >>> pipe = pipe.to("cuda")

        >>> generator = torch.Generator(device="cuda").manual_seed(0)
        >>> output = pipe(
        ...     image=original_image,
        ...     mask_image=mask_image,
        ...     num_inference_steps=250,
        ...     eta=0.0,
        ...     jump_length=10,
        ...     jump_n_sample=10,
        ...     generator=generator,
        ... )
        >>> inpainted_image = output.images[0]
        ```
Revist's avatar
Revist committed
178
179

        Returns:
180
181
182
            [`~pipelines.ImagePipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
                returned where the first element is a list with the generated images.
Revist's avatar
Revist committed
183
184
        """

185
        original_image = image
186
187

        original_image = _preprocess_image(original_image)
188
        original_image = original_image.to(device=self._execution_device, dtype=self.unet.dtype)
189
        mask_image = _preprocess_mask(mask_image)
190
        mask_image = mask_image.to(device=self._execution_device, dtype=self.unet.dtype)
Revist's avatar
Revist committed
191

192
193
        batch_size = original_image.shape[0]

Revist's avatar
Revist committed
194
        # sample gaussian noise to begin the loop
195
196
197
198
199
200
201
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        image_shape = original_image.shape
202
        image = randn_tensor(image_shape, generator=generator, device=self._execution_device, dtype=self.unet.dtype)
Revist's avatar
Revist committed
203
204

        # set step values
205
        self.scheduler.set_timesteps(num_inference_steps, jump_length, jump_n_sample, self._execution_device)
Revist's avatar
Revist committed
206
207
208
        self.scheduler.eta = eta

        t_last = self.scheduler.timesteps[0] + 1
209
        generator = generator[0] if isinstance(generator, list) else generator
210
        for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
Revist's avatar
Revist committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
            if t < t_last:
                # predict the noise residual
                model_output = self.unet(image, t).sample
                # compute previous image: x_t -> x_t-1
                image = self.scheduler.step(model_output, t, image, original_image, mask_image, generator).prev_sample

            else:
                # compute the reverse: x_t-1 -> x_t
                image = self.scheduler.undo_step(image, t_last, generator)
            t_last = t

        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)