tgate.md 6.53 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# T-GATE

[T-GATE](https://github.com/HaozheLiu-ST/T-GATE/tree/main) accelerates inference for [Stable Diffusion](../api/pipelines/stable_diffusion/overview), [PixArt](../api/pipelines/pixart), and [Latency Consistency Model](../api/pipelines/latent_consistency_models.md) pipelines by skipping the cross-attention calculation once it converges. This method doesn't require any additional training and it can speed up inference from 10-50%. T-GATE is also compatible with other optimization methods like [DeepCache](./deepcache).

Before you begin, make sure you install T-GATE.

```bash
pip install tgate
pip install -U pytorch diffusers transformers accelerate DeepCache
```


To use T-GATE with a pipeline, you need to use its corresponding loader.

| Pipeline | T-GATE Loader |
|---|---|
| PixArt | TgatePixArtLoader |
| Stable Diffusion XL | TgateSDXLLoader |
| Stable Diffusion XL + DeepCache | TgateSDXLDeepCacheLoader |
| Stable Diffusion | TgateSDLoader |
| Stable Diffusion + DeepCache | TgateSDDeepCacheLoader |

Next, create a `TgateLoader` with a pipeline, the gate step (the time step to stop calculating the cross attention), and the number of inference steps. Then call the `tgate` method on the pipeline with a prompt, gate step, and the number of inference steps.

Let's see how to enable this for several different pipelines.

<hfoptions id="pipelines">
<hfoption id="PixArt">

Accelerate `PixArtAlphaPipeline` with T-GATE:

```py
import torch
from diffusers import PixArtAlphaPipeline
from tgate import TgatePixArtLoader

pipe = PixArtAlphaPipeline.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", torch_dtype=torch.float16)
38
39
40

gate_step = 8
inference_step = 25
41
42
pipe = TgatePixArtLoader(
       pipe,
43
44
       gate_step=gate_step,
       num_inference_steps=inference_step,
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
).to("cuda")

image = pipe.tgate(
       "An alpaca made of colorful building blocks, cyberpunk.",
        gate_step=gate_step,
       num_inference_steps=inference_step,
).images[0]
```
</hfoption>
<hfoption id="Stable Diffusion XL"> 

Accelerate `StableDiffusionXLPipeline` with T-GATE:

```py
import torch
from diffusers import StableDiffusionXLPipeline
from diffusers import DPMSolverMultistepScheduler
62
from tgate import TgateSDXLLoader
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

pipe = StableDiffusionXLPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0",
            torch_dtype=torch.float16,
            variant="fp16",
            use_safetensors=True,
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)

gate_step = 10
inference_step = 25
pipe = TgateSDXLLoader(
       pipe,
       gate_step=gate_step,
       num_inference_steps=inference_step,
).to("cuda")

image = pipe.tgate(
        "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
        gate_step=gate_step,
        num_inference_steps=inference_step
).images[0]
```
</hfoption>
<hfoption id="StableDiffusionXL with DeepCache">

Accelerate `StableDiffusionXLPipeline` with [DeepCache](https://github.com/horseee/DeepCache) and T-GATE:

```py
import torch
from diffusers import StableDiffusionXLPipeline
from diffusers import DPMSolverMultistepScheduler
95
from tgate import TgateSDXLDeepCacheLoader
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

pipe = StableDiffusionXLPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0",
            torch_dtype=torch.float16,
            variant="fp16",
            use_safetensors=True,
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)

gate_step = 10
inference_step = 25
pipe = TgateSDXLDeepCacheLoader(
       pipe,
       cache_interval=3,
       cache_branch_id=0,
).to("cuda")

image = pipe.tgate(
        "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
        gate_step=gate_step,
        num_inference_steps=inference_step
).images[0]
```
</hfoption>
<hfoption id="Latent Consistency Model">

Accelerate `latent-consistency/lcm-sdxl` with T-GATE:

```py
import torch
from diffusers import StableDiffusionXLPipeline
from diffusers import UNet2DConditionModel, LCMScheduler
from diffusers import DPMSolverMultistepScheduler
129
from tgate import TgateSDXLLoader
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

unet = UNet2DConditionModel.from_pretrained(
    "latent-consistency/lcm-sdxl",
    torch_dtype=torch.float16,
    variant="fp16",
)
pipe = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    unet=unet,
    torch_dtype=torch.float16,
    variant="fp16",
)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)

gate_step = 1
inference_step = 4
pipe = TgateSDXLLoader(
       pipe,
       gate_step=gate_step,
       num_inference_steps=inference_step,
       lcm=True
).to("cuda")

image = pipe.tgate(
        "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.",
        gate_step=gate_step,
        num_inference_steps=inference_step
).images[0]
```
</hfoption>
</hfoptions>

T-GATE also supports [`StableDiffusionPipeline`] and [PixArt-alpha/PixArt-LCM-XL-2-1024-MS](https://hf.co/PixArt-alpha/PixArt-LCM-XL-2-1024-MS).

## Benchmarks
| Model                 | MACs     | Param     | Latency | Zero-shot 10K-FID on MS-COCO |
|-----------------------|----------|-----------|---------|---------------------------|
| SD-1.5                | 16.938T  | 859.520M  | 7.032s  | 23.927                    |
| SD-1.5 w/ T-GATE       | 9.875T   | 815.557M  | 4.313s  | 20.789                    |
| SD-2.1                | 38.041T  | 865.785M  | 16.121s | 22.609                    |
| SD-2.1 w/ T-GATE       | 22.208T  | 815.433 M | 9.878s  | 19.940                    |
| SD-XL                 | 149.438T | 2.570B    | 53.187s | 24.628                    |
| SD-XL w/ T-GATE        | 84.438T  | 2.024B    | 27.932s | 22.738                    |
| Pixart-Alpha          | 107.031T | 611.350M  | 61.502s | 38.669                    |
| Pixart-Alpha w/ T-GATE | 65.318T  | 462.585M  | 37.867s | 35.825                    |
| DeepCache (SD-XL)     | 57.888T  | -         | 19.931s | 23.755                    |
| DeepCache w/ T-GATE    | 43.868T  | -         | 14.666s | 23.999                    |
| LCM (SD-XL)           | 11.955T  | 2.570B    | 3.805s  | 25.044                    |
| LCM w/ T-GATE          | 11.171T  | 2.024B    | 3.533s  | 25.028                    |
| LCM (Pixart-Alpha)    | 8.563T   | 611.350M  | 4.733s  | 36.086                    |
| LCM w/ T-GATE          | 7.623T   | 462.585M  | 4.543s  | 37.048                    |

The latency is tested on an NVIDIA 1080TI, MACs and Params are calculated with [calflops](https://github.com/MrYxJ/calculate-flops.pytorch), and the FID is calculated with [PytorchFID](https://github.com/mseitzer/pytorch-fid).