test_models_unet_2d.py 9.56 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
18
19
20
21
import math
import unittest

import torch

22
23
from diffusers import UNet2DModel
from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device
24

25
from .test_modeling_common import ModelTesterMixin
26
27


Patrick von Platen's avatar
Patrick von Platen committed
28
logger = logging.get_logger(__name__)
29
torch.backends.cuda.matmul.allow_tf32 = False
30
torch.use_deterministic_algorithms(True)
31
32


33
class Unet2DModelTests(ModelTesterMixin, unittest.TestCase):
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    model_class = UNet2DModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": (32, 64),
            "down_block_types": ("DownBlock2D", "AttnDownBlock2D"),
            "up_block_types": ("AttnUpBlock2D", "UpBlock2D"),
            "attention_head_dim": None,
            "out_channels": 3,
            "in_channels": 3,
            "layers_per_block": 2,
            "sample_size": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict


class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNet2DModel

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (4, 32, 32)

    @property
    def output_shape(self):
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "sample_size": 32,
            "in_channels": 4,
            "out_channels": 4,
            "layers_per_block": 2,
            "block_out_channels": (32, 64),
            "attention_head_dim": 32,
            "down_block_types": ("DownBlock2D", "DownBlock2D"),
            "up_block_types": ("UpBlock2D", "UpBlock2D"),
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_pretrained_hub(self):
        model, loading_info = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)

        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
113
        image = model(**self.dummy_input).sample
114
115
116

        assert image is not None, "Make sure output is not None"

Anton Lozhkov's avatar
Anton Lozhkov committed
117
    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
118
    def test_from_pretrained_accelerate(self):
119
        model, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
120
121
122
123
124
        model.to(torch_device)
        image = model(**self.dummy_input).sample

        assert image is not None, "Make sure output is not None"

Anton Lozhkov's avatar
Anton Lozhkov committed
125
    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
126
    def test_from_pretrained_accelerate_wont_change_results(self):
127
        # by defautl model loading will use accelerate as `low_cpu_mem_usage=True`
128
        model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        model_accelerate.to(torch_device)
        model_accelerate.eval()

        noise = torch.randn(
            1,
            model_accelerate.config.in_channels,
            model_accelerate.config.sample_size,
            model_accelerate.config.sample_size,
            generator=torch.manual_seed(0),
        )
        noise = noise.to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)

        arr_accelerate = model_accelerate(noise, time_step)["sample"]

        # two models don't need to stay in the device at the same time
        del model_accelerate
        torch.cuda.empty_cache()
        gc.collect()

149
        model_normal_load, _ = UNet2DModel.from_pretrained(
150
            "fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False
151
        )
152
153
154
155
        model_normal_load.to(torch_device)
        model_normal_load.eval()
        arr_normal_load = model_normal_load(noise, time_step)["sample"]

156
        assert torch_all_close(arr_accelerate, arr_normal_load, rtol=1e-3)
157

158
159
160
    def test_output_pretrained(self):
        model = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update")
        model.eval()
161
        model.to(torch_device)
162

163
164
165
166
167
168
169
        noise = torch.randn(
            1,
            model.config.in_channels,
            model.config.sample_size,
            model.config.sample_size,
            generator=torch.manual_seed(0),
        )
170
171
        noise = noise.to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)
172
173

        with torch.no_grad():
174
            output = model(noise, time_step).sample
175

176
        output_slice = output[0, -1, -3:, -3:].flatten().cpu()
177
178
179
180
        # fmt: off
        expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
        # fmt: on

181
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-3))
182
183
184
185
186
187
188
189
190
191
192


class NCSNppModelTests(ModelTesterMixin, unittest.TestCase):
    model_class = UNet2DModel

    @property
    def dummy_input(self, sizes=(32, 32)):
        batch_size = 4
        num_channels = 3

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
193
        time_step = torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device)
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": [32, 64, 64, 64],
            "in_channels": 3,
            "layers_per_block": 1,
            "out_channels": 3,
            "time_embedding_type": "fourier",
            "norm_eps": 1e-6,
            "mid_block_scale_factor": math.sqrt(2.0),
            "norm_num_groups": None,
            "down_block_types": [
                "SkipDownBlock2D",
                "AttnSkipDownBlock2D",
                "SkipDownBlock2D",
                "SkipDownBlock2D",
            ],
            "up_block_types": [
                "SkipUpBlock2D",
                "SkipUpBlock2D",
                "AttnSkipUpBlock2D",
                "SkipUpBlock2D",
            ],
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

231
    @slow
232
    def test_from_pretrained_hub(self):
233
        model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True)
234
235
236
237
238
239
240
241
242
243
244
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        inputs = self.dummy_input
        noise = floats_tensor((4, 3) + (256, 256)).to(torch_device)
        inputs["sample"] = noise
        image = model(**inputs)

        assert image is not None, "Make sure output is not None"

245
    @slow
246
    def test_output_pretrained_ve_mid(self):
247
        model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256")
248
249
250
251
252
253
254
255
256
257
        model.to(torch_device)

        batch_size = 4
        num_channels = 3
        sizes = (256, 256)

        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)

        with torch.no_grad():
258
            output = model(noise, time_step).sample
259
260
261

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
262
        expected_output_slice = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608])
263
264
        # fmt: on

265
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
266
267
268
269
270
271
272
273
274
275
276
277
278

    def test_output_pretrained_ve_large(self):
        model = UNet2DModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update")
        model.to(torch_device)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)

        with torch.no_grad():
279
            output = model(noise, time_step).sample
280
281
282
283
284
285

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
        expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
        # fmt: on

286
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
287
288
289
290

    def test_forward_with_norm_groups(self):
        # not required for this model
        pass