test_layers_utils.py 22.1 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
Patrick von Platen's avatar
Patrick von Platen committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np
import torch
Will Berman's avatar
Will Berman committed
21
from torch import nn
Patrick von Platen's avatar
Patrick von Platen committed
22

23
from diffusers.models.attention import GEGLU, AdaLayerNorm, ApproximateGELU
24
from diffusers.models.embeddings import get_timestep_embedding
Erin's avatar
Erin committed
25
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
26
from diffusers.models.transformer_2d import Transformer2DModel
27
from diffusers.utils import torch_device
Patrick von Platen's avatar
Patrick von Platen committed
28
29
30
31
32


torch.backends.cuda.matmul.allow_tf32 = False


33
34
class EmbeddingsTests(unittest.TestCase):
    def test_timestep_embeddings(self):
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
        embedding_dim = 256
        timesteps = torch.arange(16)

        t1 = get_timestep_embedding(timesteps, embedding_dim)

        # first vector should always be composed only of 0's and 1's
        assert (t1[0, : embedding_dim // 2] - 0).abs().sum() < 1e-5
        assert (t1[0, embedding_dim // 2 :] - 1).abs().sum() < 1e-5

        # last element of each vector should be one
        assert (t1[:, -1] - 1).abs().sum() < 1e-5

        # For large embeddings (e.g. 128) the frequency of every vector is higher
        # than the previous one which means that the gradients of later vectors are
        # ALWAYS higher than the previous ones
        grad_mean = np.abs(np.gradient(t1, axis=-1)).mean(axis=1)

        prev_grad = 0.0
        for grad in grad_mean:
            assert grad > prev_grad
            prev_grad = grad

    def test_timestep_defaults(self):
58
59
        embedding_dim = 16
        timesteps = torch.arange(10)
Patrick von Platen's avatar
Patrick von Platen committed
60

61
        t1 = get_timestep_embedding(timesteps, embedding_dim)
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        t2 = get_timestep_embedding(
            timesteps, embedding_dim, flip_sin_to_cos=False, downscale_freq_shift=1, max_period=10_000
        )

        assert torch.allclose(t1.cpu(), t2.cpu(), 1e-3)

    def test_timestep_flip_sin_cos(self):
        embedding_dim = 16
        timesteps = torch.arange(10)

        t1 = get_timestep_embedding(timesteps, embedding_dim, flip_sin_to_cos=True)
        t1 = torch.cat([t1[:, embedding_dim // 2 :], t1[:, : embedding_dim // 2]], dim=-1)

        t2 = get_timestep_embedding(timesteps, embedding_dim, flip_sin_to_cos=False)

        assert torch.allclose(t1.cpu(), t2.cpu(), 1e-3)

    def test_timestep_downscale_freq_shift(self):
        embedding_dim = 16
        timesteps = torch.arange(10)

        t1 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=0)
        t2 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=1)

        # get cosine half (vectors that are wrapped into cosine)
        cosine_half = (t1 - t2)[:, embedding_dim // 2 :]

        # cosine needs to be negative
        assert (np.abs((cosine_half <= 0).numpy()) - 1).sum() < 1e-5
Patrick von Platen's avatar
Patrick von Platen committed
91

92
93
94
    def test_sinoid_embeddings_hardcoded(self):
        embedding_dim = 64
        timesteps = torch.arange(128)
Patrick von Platen's avatar
Patrick von Platen committed
95

96
97
98
99
100
101
        # standard unet, score_vde
        t1 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=1, flip_sin_to_cos=False)
        # glide, ldm
        t2 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=0, flip_sin_to_cos=True)
        # grad-tts
        t3 = get_timestep_embedding(timesteps, embedding_dim, scale=1000)
Patrick von Platen's avatar
Patrick von Platen committed
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        assert torch.allclose(
            t1[23:26, 47:50].flatten().cpu(),
            torch.tensor([0.9646, 0.9804, 0.9892, 0.9615, 0.9787, 0.9882, 0.9582, 0.9769, 0.9872]),
            1e-3,
        )
        assert torch.allclose(
            t2[23:26, 47:50].flatten().cpu(),
            torch.tensor([0.3019, 0.2280, 0.1716, 0.3146, 0.2377, 0.1790, 0.3272, 0.2474, 0.1864]),
            1e-3,
        )
        assert torch.allclose(
            t3[23:26, 47:50].flatten().cpu(),
            torch.tensor([-0.9801, -0.9464, -0.9349, -0.3952, 0.8887, -0.9709, 0.5299, -0.2853, -0.9927]),
            1e-3,
        )
patil-suraj's avatar
patil-suraj committed
118
119


120
class Upsample2DBlockTests(unittest.TestCase):
patil-suraj's avatar
patil-suraj committed
121
122
123
    def test_upsample_default(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 32, 32)
124
        upsample = Upsample2D(channels=32, use_conv=False)
patil-suraj's avatar
patil-suraj committed
125
126
127
128
129
130
131
132
133
134
135
        with torch.no_grad():
            upsampled = upsample(sample)

        assert upsampled.shape == (1, 32, 64, 64)
        output_slice = upsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([-0.2173, -1.2079, -1.2079, 0.2952, 1.1254, 1.1254, 0.2952, 1.1254, 1.1254])
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_upsample_with_conv(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 32, 32)
136
        upsample = Upsample2D(channels=32, use_conv=True)
patil-suraj's avatar
patil-suraj committed
137
138
139
140
141
142
143
144
145
146
147
        with torch.no_grad():
            upsampled = upsample(sample)

        assert upsampled.shape == (1, 32, 64, 64)
        output_slice = upsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([0.7145, 1.3773, 0.3492, 0.8448, 1.0839, -0.3341, 0.5956, 0.1250, -0.4841])
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_upsample_with_conv_out_dim(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 32, 32)
148
        upsample = Upsample2D(channels=32, use_conv=True, out_channels=64)
patil-suraj's avatar
patil-suraj committed
149
150
151
152
153
154
155
156
157
158
159
        with torch.no_grad():
            upsampled = upsample(sample)

        assert upsampled.shape == (1, 64, 64, 64)
        output_slice = upsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([0.2703, 0.1656, -0.2538, -0.0553, -0.2984, 0.1044, 0.1155, 0.2579, 0.7755])
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_upsample_with_transpose(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 32, 32)
160
        upsample = Upsample2D(channels=32, use_conv=False, use_conv_transpose=True)
patil-suraj's avatar
patil-suraj committed
161
162
163
164
165
166
167
        with torch.no_grad():
            upsampled = upsample(sample)

        assert upsampled.shape == (1, 32, 64, 64)
        output_slice = upsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([-0.3028, -0.1582, 0.0071, 0.0350, -0.4799, -0.1139, 0.1056, -0.1153, -0.1046])
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
patil-suraj's avatar
patil-suraj committed
168
169


170
class Downsample2DBlockTests(unittest.TestCase):
patil-suraj's avatar
patil-suraj committed
171
172
173
    def test_downsample_default(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64)
174
        downsample = Downsample2D(channels=32, use_conv=False)
patil-suraj's avatar
patil-suraj committed
175
176
177
178
179
180
181
182
183
184
185
186
187
        with torch.no_grad():
            downsampled = downsample(sample)

        assert downsampled.shape == (1, 32, 32, 32)
        output_slice = downsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([-0.0513, -0.3889, 0.0640, 0.0836, -0.5460, -0.0341, -0.0169, -0.6967, 0.1179])
        max_diff = (output_slice.flatten() - expected_slice).abs().sum().item()
        assert max_diff <= 1e-3
        # assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-1)

    def test_downsample_with_conv(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64)
188
        downsample = Downsample2D(channels=32, use_conv=True)
patil-suraj's avatar
patil-suraj committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        with torch.no_grad():
            downsampled = downsample(sample)

        assert downsampled.shape == (1, 32, 32, 32)
        output_slice = downsampled[0, -1, -3:, -3:]

        expected_slice = torch.tensor(
            [0.9267, 0.5878, 0.3337, 1.2321, -0.1191, -0.3984, -0.7532, -0.0715, -0.3913],
        )
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_downsample_with_conv_pad1(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64)
203
        downsample = Downsample2D(channels=32, use_conv=True, padding=1)
patil-suraj's avatar
patil-suraj committed
204
205
206
207
208
209
210
211
212
213
214
        with torch.no_grad():
            downsampled = downsample(sample)

        assert downsampled.shape == (1, 32, 32, 32)
        output_slice = downsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([0.9267, 0.5878, 0.3337, 1.2321, -0.1191, -0.3984, -0.7532, -0.0715, -0.3913])
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_downsample_with_conv_out_dim(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64)
215
        downsample = Downsample2D(channels=32, use_conv=True, out_channels=16)
patil-suraj's avatar
patil-suraj committed
216
217
218
219
220
221
222
        with torch.no_grad():
            downsampled = downsample(sample)

        assert downsampled.shape == (1, 16, 32, 32)
        output_slice = downsampled[0, -1, -3:, -3:]
        expected_slice = torch.tensor([-0.6586, 0.5985, 0.0721, 0.1256, -0.1492, 0.4436, -0.2544, 0.5021, 1.1522])
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
Sid Sahai's avatar
Sid Sahai committed
223
224


Erin's avatar
Erin committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
class ResnetBlock2DTests(unittest.TestCase):
    def test_resnet_default(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        temb = torch.randn(1, 128).to(torch_device)
        resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128).to(torch_device)
        with torch.no_grad():
            output_tensor = resnet_block(sample, temb)

        assert output_tensor.shape == (1, 32, 64, 64)
        output_slice = output_tensor[0, -1, -3:, -3:]
        expected_slice = torch.tensor(
            [-1.9010, -0.2974, -0.8245, -1.3533, 0.8742, -0.9645, -2.0584, 1.3387, -0.4746], device=torch_device
        )
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_restnet_with_use_in_shortcut(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        temb = torch.randn(1, 128).to(torch_device)
        resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, use_in_shortcut=True).to(torch_device)
        with torch.no_grad():
            output_tensor = resnet_block(sample, temb)

        assert output_tensor.shape == (1, 32, 64, 64)
        output_slice = output_tensor[0, -1, -3:, -3:]
        expected_slice = torch.tensor(
            [0.2226, -1.0791, -0.1629, 0.3659, -0.2889, -1.2376, 0.0582, 0.9206, 0.0044], device=torch_device
        )
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_resnet_up(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        temb = torch.randn(1, 128).to(torch_device)
        resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, up=True).to(torch_device)
        with torch.no_grad():
            output_tensor = resnet_block(sample, temb)

        assert output_tensor.shape == (1, 32, 128, 128)
        output_slice = output_tensor[0, -1, -3:, -3:]
        expected_slice = torch.tensor(
            [1.2130, -0.8753, -0.9027, 1.5783, -0.5362, -0.5001, 1.0726, -0.7732, -0.4182], device=torch_device
        )
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_resnet_down(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        temb = torch.randn(1, 128).to(torch_device)
        resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, down=True).to(torch_device)
        with torch.no_grad():
            output_tensor = resnet_block(sample, temb)

        assert output_tensor.shape == (1, 32, 32, 32)
        output_slice = output_tensor[0, -1, -3:, -3:]
        expected_slice = torch.tensor(
            [-0.3002, -0.7135, 0.1359, 0.0561, -0.7935, 0.0113, -0.1766, -0.6714, -0.0436], device=torch_device
        )
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_restnet_with_kernel_fir(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        temb = torch.randn(1, 128).to(torch_device)
        resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, kernel="fir", down=True).to(torch_device)
        with torch.no_grad():
            output_tensor = resnet_block(sample, temb)

        assert output_tensor.shape == (1, 32, 32, 32)
        output_slice = output_tensor[0, -1, -3:, -3:]
        expected_slice = torch.tensor(
            [-0.0934, -0.5729, 0.0909, -0.2710, -0.5044, 0.0243, -0.0665, -0.5267, -0.3136], device=torch_device
        )
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_restnet_with_kernel_sde_vp(self):
        torch.manual_seed(0)
        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        temb = torch.randn(1, 128).to(torch_device)
        resnet_block = ResnetBlock2D(in_channels=32, temb_channels=128, kernel="sde_vp", down=True).to(torch_device)
        with torch.no_grad():
            output_tensor = resnet_block(sample, temb)

        assert output_tensor.shape == (1, 32, 32, 32)
        output_slice = output_tensor[0, -1, -3:, -3:]
        expected_slice = torch.tensor(
            [-0.3002, -0.7135, 0.1359, 0.0561, -0.7935, 0.0113, -0.1766, -0.6714, -0.0436], device=torch_device
        )
Anton Lozhkov's avatar
Anton Lozhkov committed
314
315
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

Sid Sahai's avatar
Sid Sahai committed
316

Will Berman's avatar
Will Berman committed
317
class Transformer2DModelTests(unittest.TestCase):
Sid Sahai's avatar
Sid Sahai committed
318
319
320
321
322
323
    def test_spatial_transformer_default(self):
        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        sample = torch.randn(1, 32, 64, 64).to(torch_device)
Will Berman's avatar
Will Berman committed
324
        spatial_transformer_block = Transformer2DModel(
Sid Sahai's avatar
Sid Sahai committed
325
            in_channels=32,
Will Berman's avatar
Will Berman committed
326
327
            num_attention_heads=1,
            attention_head_dim=32,
Sid Sahai's avatar
Sid Sahai committed
328
            dropout=0.0,
Will Berman's avatar
Will Berman committed
329
            cross_attention_dim=None,
Sid Sahai's avatar
Sid Sahai committed
330
331
        ).to(torch_device)
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
332
            attention_scores = spatial_transformer_block(sample).sample
Sid Sahai's avatar
Sid Sahai committed
333
334
335
336

        assert attention_scores.shape == (1, 32, 64, 64)
        output_slice = attention_scores[0, -1, -3:, -3:]

337
        expected_slice = torch.tensor(
338
            [-1.9455, -0.0066, -1.3933, -1.5878, 0.5325, -0.6486, -1.8648, 0.7515, -0.9689], device=torch_device
339
        )
Sid Sahai's avatar
Sid Sahai committed
340
341
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

Will Berman's avatar
Will Berman committed
342
    def test_spatial_transformer_cross_attention_dim(self):
Sid Sahai's avatar
Sid Sahai committed
343
344
345
346
347
        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        sample = torch.randn(1, 64, 64, 64).to(torch_device)
Will Berman's avatar
Will Berman committed
348
        spatial_transformer_block = Transformer2DModel(
Sid Sahai's avatar
Sid Sahai committed
349
            in_channels=64,
Will Berman's avatar
Will Berman committed
350
351
            num_attention_heads=2,
            attention_head_dim=32,
Sid Sahai's avatar
Sid Sahai committed
352
            dropout=0.0,
Will Berman's avatar
Will Berman committed
353
            cross_attention_dim=64,
Sid Sahai's avatar
Sid Sahai committed
354
355
356
        ).to(torch_device)
        with torch.no_grad():
            context = torch.randn(1, 4, 64).to(torch_device)
Will Berman's avatar
Will Berman committed
357
            attention_scores = spatial_transformer_block(sample, context).sample
Sid Sahai's avatar
Sid Sahai committed
358
359
360

        assert attention_scores.shape == (1, 64, 64, 64)
        output_slice = attention_scores[0, -1, -3:, -3:]
Patrick von Platen's avatar
Patrick von Platen committed
361
362
363
        expected_slice = torch.tensor(
            [0.0143, -0.6909, -2.1547, -1.8893, 1.4097, 0.1359, -0.2521, -1.3359, 0.2598], device=torch_device
        )
Sid Sahai's avatar
Sid Sahai committed
364
365
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

Will Berman's avatar
Will Berman committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    def test_spatial_transformer_timestep(self):
        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        num_embeds_ada_norm = 5

        sample = torch.randn(1, 64, 64, 64).to(torch_device)
        spatial_transformer_block = Transformer2DModel(
            in_channels=64,
            num_attention_heads=2,
            attention_head_dim=32,
            dropout=0.0,
            cross_attention_dim=64,
            num_embeds_ada_norm=num_embeds_ada_norm,
        ).to(torch_device)
        with torch.no_grad():
            timestep_1 = torch.tensor(1, dtype=torch.long).to(torch_device)
            timestep_2 = torch.tensor(2, dtype=torch.long).to(torch_device)
            attention_scores_1 = spatial_transformer_block(sample, timestep=timestep_1).sample
            attention_scores_2 = spatial_transformer_block(sample, timestep=timestep_2).sample

        assert attention_scores_1.shape == (1, 64, 64, 64)
        assert attention_scores_2.shape == (1, 64, 64, 64)

        output_slice_1 = attention_scores_1[0, -1, -3:, -3:]
        output_slice_2 = attention_scores_2[0, -1, -3:, -3:]

Patrick von Platen's avatar
Patrick von Platen committed
394
395
396
        expected_slice = torch.tensor(
            [-0.3923, -1.0923, -1.7144, -1.5570, 1.4154, 0.1738, -0.1157, -1.2998, -0.1703], device=torch_device
        )
Will Berman's avatar
Will Berman committed
397
        expected_slice_2 = torch.tensor(
Patrick von Platen's avatar
Patrick von Platen committed
398
            [-0.4311, -1.1376, -1.7732, -1.5997, 1.3450, 0.0964, -0.1569, -1.3590, -0.2348], device=torch_device
Will Berman's avatar
Will Berman committed
399
400
        )

401
        assert torch.allclose(output_slice_1.flatten(), expected_slice, atol=1e-3)
Will Berman's avatar
Will Berman committed
402
403
        assert torch.allclose(output_slice_2.flatten(), expected_slice_2, atol=1e-3)

Sid Sahai's avatar
Sid Sahai committed
404
405
406
407
408
409
410
    def test_spatial_transformer_dropout(self):
        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        sample = torch.randn(1, 32, 64, 64).to(torch_device)
        spatial_transformer_block = (
Will Berman's avatar
Will Berman committed
411
            Transformer2DModel(
Sid Sahai's avatar
Sid Sahai committed
412
                in_channels=32,
Will Berman's avatar
Will Berman committed
413
414
                num_attention_heads=2,
                attention_head_dim=16,
Sid Sahai's avatar
Sid Sahai committed
415
                dropout=0.3,
Will Berman's avatar
Will Berman committed
416
                cross_attention_dim=None,
Sid Sahai's avatar
Sid Sahai committed
417
418
419
420
421
            )
            .to(torch_device)
            .eval()
        )
        with torch.no_grad():
Will Berman's avatar
Will Berman committed
422
            attention_scores = spatial_transformer_block(sample).sample
Sid Sahai's avatar
Sid Sahai committed
423
424
425
426

        assert attention_scores.shape == (1, 32, 64, 64)
        output_slice = attention_scores[0, -1, -3:, -3:]

427
        expected_slice = torch.tensor(
428
            [-1.9380, -0.0083, -1.3771, -1.5819, 0.5209, -0.6441, -1.8545, 0.7563, -0.9615], device=torch_device
429
        )
Sid Sahai's avatar
Sid Sahai committed
430
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)
Will Berman's avatar
Will Berman committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

    @unittest.skipIf(torch_device == "mps", "MPS does not support float64")
    def test_spatial_transformer_discrete(self):
        torch.manual_seed(0)
        if torch.cuda.is_available():
            torch.cuda.manual_seed_all(0)

        num_embed = 5

        sample = torch.randint(0, num_embed, (1, 32)).to(torch_device)
        spatial_transformer_block = (
            Transformer2DModel(
                num_attention_heads=1,
                attention_head_dim=32,
                num_vector_embeds=num_embed,
                sample_size=16,
            )
            .to(torch_device)
            .eval()
        )

        with torch.no_grad():
            attention_scores = spatial_transformer_block(sample).sample

        assert attention_scores.shape == (1, num_embed - 1, 32)

        output_slice = attention_scores[0, -2:, -3:]

459
        expected_slice = torch.tensor([-1.7648, -1.0241, -2.0985, -1.8035, -1.6404, -1.2098], device=torch_device)
Will Berman's avatar
Will Berman committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
        assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)

    def test_spatial_transformer_default_norm_layers(self):
        spatial_transformer_block = Transformer2DModel(num_attention_heads=1, attention_head_dim=32, in_channels=32)

        assert spatial_transformer_block.transformer_blocks[0].norm1.__class__ == nn.LayerNorm
        assert spatial_transformer_block.transformer_blocks[0].norm3.__class__ == nn.LayerNorm

    def test_spatial_transformer_ada_norm_layers(self):
        spatial_transformer_block = Transformer2DModel(
            num_attention_heads=1,
            attention_head_dim=32,
            in_channels=32,
            num_embeds_ada_norm=5,
        )

        assert spatial_transformer_block.transformer_blocks[0].norm1.__class__ == AdaLayerNorm
        assert spatial_transformer_block.transformer_blocks[0].norm3.__class__ == nn.LayerNorm

    def test_spatial_transformer_default_ff_layers(self):
        spatial_transformer_block = Transformer2DModel(
            num_attention_heads=1,
            attention_head_dim=32,
            in_channels=32,
        )

        assert spatial_transformer_block.transformer_blocks[0].ff.net[0].__class__ == GEGLU
        assert spatial_transformer_block.transformer_blocks[0].ff.net[1].__class__ == nn.Dropout
        assert spatial_transformer_block.transformer_blocks[0].ff.net[2].__class__ == nn.Linear

        dim = 32
        inner_dim = 128

        # First dimension change
        assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.in_features == dim
        # NOTE: inner_dim * 2 because GEGLU
        assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.out_features == inner_dim * 2

        # Second dimension change
        assert spatial_transformer_block.transformer_blocks[0].ff.net[2].in_features == inner_dim
        assert spatial_transformer_block.transformer_blocks[0].ff.net[2].out_features == dim

    def test_spatial_transformer_geglu_approx_ff_layers(self):
        spatial_transformer_block = Transformer2DModel(
            num_attention_heads=1,
            attention_head_dim=32,
            in_channels=32,
            activation_fn="geglu-approximate",
        )

        assert spatial_transformer_block.transformer_blocks[0].ff.net[0].__class__ == ApproximateGELU
        assert spatial_transformer_block.transformer_blocks[0].ff.net[1].__class__ == nn.Dropout
        assert spatial_transformer_block.transformer_blocks[0].ff.net[2].__class__ == nn.Linear

        dim = 32
        inner_dim = 128

        # First dimension change
        assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.in_features == dim
        assert spatial_transformer_block.transformer_blocks[0].ff.net[0].proj.out_features == inner_dim

        # Second dimension change
        assert spatial_transformer_block.transformer_blocks[0].ff.net[2].in_features == inner_dim
        assert spatial_transformer_block.transformer_blocks[0].ff.net[2].out_features == dim

    def test_spatial_transformer_attention_bias(self):
        spatial_transformer_block = Transformer2DModel(
            num_attention_heads=1, attention_head_dim=32, in_channels=32, attention_bias=True
        )

        assert spatial_transformer_block.transformer_blocks[0].attn1.to_q.bias is not None
        assert spatial_transformer_block.transformer_blocks[0].attn1.to_k.bias is not None
        assert spatial_transformer_block.transformer_blocks[0].attn1.to_v.bias is not None