autoencoder_kl.py 21.2 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from typing import Dict, Optional, Tuple, Union
15
16
17
18

import torch
import torch.nn as nn

19
from ...configuration_utils import ConfigMixin, register_to_config
20
from ...loaders.single_file_model import FromOriginalModelMixin
21
22
from ...utils.accelerate_utils import apply_forward_hook
from ..attention_processor import (
23
24
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
25
    Attention,
26
27
28
29
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
)
30
31
from ..modeling_outputs import AutoencoderKLOutput
from ..modeling_utils import ModelMixin
32
33
34
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder


35
class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalModelMixin):
Steven Liu's avatar
Steven Liu committed
36
37
    r"""
    A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
38

Steven Liu's avatar
Steven Liu committed
39
40
    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
41
42
43
44

    Parameters:
        in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
        out_channels (int,  *optional*, defaults to 3): Number of channels in the output.
Steven Liu's avatar
Steven Liu committed
45
46
47
48
49
50
        down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
            Tuple of downsample block types.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
            Tuple of block output channels.
51
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
52
        latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
Steven Liu's avatar
Steven Liu committed
53
        sample_size (`int`, *optional*, defaults to `32`): Sample input size.
54
55
56
57
58
59
60
        scaling_factor (`float`, *optional*, defaults to 0.18215):
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
61
62
63
64
        force_upcast (`bool`, *optional*, default to `True`):
            If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
            can be fine-tuned / trained to a lower range without loosing too much precision in which case
            `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
65
66
    """

67
    _supports_gradient_checkpointing = True
68
    _no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D"]
69

70
71
72
73
74
75
76
77
78
79
80
81
82
    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
        up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int] = (64,),
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 4,
        norm_num_groups: int = 32,
        sample_size: int = 32,
83
        scaling_factor: float = 0.18215,
Dhruv Nair's avatar
Dhruv Nair committed
84
        shift_factor: Optional[float] = None,
85
86
        latents_mean: Optional[Tuple[float]] = None,
        latents_std: Optional[Tuple[float]] = None,
87
        force_upcast: float = True,
Dhruv Nair's avatar
Dhruv Nair committed
88
89
        use_quant_conv: bool = True,
        use_post_quant_conv: bool = True,
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    ):
        super().__init__()

        # pass init params to Encoder
        self.encoder = Encoder(
            in_channels=in_channels,
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_num_groups=norm_num_groups,
            double_z=True,
        )

        # pass init params to Decoder
        self.decoder = Decoder(
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            norm_num_groups=norm_num_groups,
            act_fn=act_fn,
        )

Dhruv Nair's avatar
Dhruv Nair committed
116
117
        self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) if use_quant_conv else None
        self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) if use_post_quant_conv else None
118
119
120
121
122
123
124
125
126
127
128

        self.use_slicing = False
        self.use_tiling = False

        # only relevant if vae tiling is enabled
        self.tile_sample_min_size = self.config.sample_size
        sample_size = (
            self.config.sample_size[0]
            if isinstance(self.config.sample_size, (list, tuple))
            else self.config.sample_size
        )
129
        self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
130
131
        self.tile_overlap_factor = 0.25

132
133
134
135
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (Encoder, Decoder)):
            module.gradient_checkpointing = value

136
137
138
    def enable_tiling(self, use_tiling: bool = True):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
Steven Liu's avatar
Steven Liu committed
139
140
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
141
142
143
144
145
        """
        self.use_tiling = use_tiling

    def disable_tiling(self):
        r"""
Steven Liu's avatar
Steven Liu committed
146
147
        Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
        decoding in one step.
148
149
150
151
152
153
154
155
156
157
158
159
        """
        self.enable_tiling(False)

    def enable_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.use_slicing = True

    def disable_slicing(self):
        r"""
Steven Liu's avatar
Steven Liu committed
160
        Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
161
162
        decoding in one step.
        """
163
164
        self.use_slicing = False

165
    @property
166
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
167
168
169
170
171
172
173
174
175
176
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
177
            if hasattr(module, "get_processor"):
178
                processors[f"{name}.processor"] = module.get_processor()
179
180
181
182
183
184
185
186
187
188
189

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

190
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
191
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
192
        r"""
Steven Liu's avatar
Steven Liu committed
193
194
        Sets the attention processor to use to compute attention.

195
        Parameters:
Steven Liu's avatar
Steven Liu committed
196
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
197
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Steven Liu's avatar
Steven Liu committed
198
199
200
201
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.
202
203
204
205
206
207
208
209
210
211
212
213
214

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
215
                    module.set_processor(processor)
216
                else:
217
                    module.set_processor(processor.pop(f"{name}.processor"))
218
219
220
221
222
223
224

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

225
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
226
227
228
229
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
230
231
232
233
234
235
236
237
238
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

239
        self.set_attn_processor(processor)
240

241
    @apply_forward_hook
242
    def encode(
243
        self, x: torch.Tensor, return_dict: bool = True
244
245
246
247
248
    ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
        """
        Encode a batch of images into latents.

        Args:
249
            x (`torch.Tensor`): Input batch of images.
250
            return_dict (`bool`, *optional*, defaults to `True`):
Dhruv Nair's avatar
Dhruv Nair committed
251
                Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
252
253
254

        Returns:
                The latent representations of the encoded images. If `return_dict` is True, a
Dhruv Nair's avatar
Dhruv Nair committed
255
                [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
256
        """
257
258
259
        if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
            return self.tiled_encode(x, return_dict=return_dict)

Patrick von Platen's avatar
Patrick von Platen committed
260
261
262
263
264
265
        if self.use_slicing and x.shape[0] > 1:
            encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
            h = torch.cat(encoded_slices)
        else:
            h = self.encoder(x)

Dhruv Nair's avatar
Dhruv Nair committed
266
267
268
269
270
        if self.quant_conv is not None:
            moments = self.quant_conv(h)
        else:
            moments = h

271
272
273
274
275
276
277
        posterior = DiagonalGaussianDistribution(moments)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

278
    def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
279
280
281
        if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
            return self.tiled_decode(z, return_dict=return_dict)

Dhruv Nair's avatar
Dhruv Nair committed
282
283
284
        if self.post_quant_conv is not None:
            z = self.post_quant_conv(z)

285
286
287
288
289
290
291
        dec = self.decoder(z)

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

292
    @apply_forward_hook
Dhruv Nair's avatar
Dhruv Nair committed
293
294
295
    def decode(
        self, z: torch.FloatTensor, return_dict: bool = True, generator=None
    ) -> Union[DecoderOutput, torch.FloatTensor]:
296
297
298
299
        """
        Decode a batch of images.

        Args:
300
            z (`torch.Tensor`): Input batch of latent vectors.
301
302
303
304
305
306
307
308
309
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.

        """
310
311
312
313
        if self.use_slicing and z.shape[0] > 1:
            decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
            decoded = torch.cat(decoded_slices)
        else:
Dhruv Nair's avatar
Dhruv Nair committed
314
            decoded = self._decode(z).sample
315
316
317
318
319
320

        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)

321
    def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
322
323
        blend_extent = min(a.shape[2], b.shape[2], blend_extent)
        for y in range(blend_extent):
324
325
326
            b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
        return b

327
    def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
328
329
        blend_extent = min(a.shape[3], b.shape[3], blend_extent)
        for x in range(blend_extent):
330
331
332
            b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
        return b

333
    def tiled_encode(self, x: torch.Tensor, return_dict: bool = True) -> AutoencoderKLOutput:
334
        r"""Encode a batch of images using a tiled encoder.
335

336
        When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
Steven Liu's avatar
Steven Liu committed
337
338
        steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
        different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
339
        tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
Steven Liu's avatar
Steven Liu committed
340
341
342
        output, but they should be much less noticeable.

        Args:
343
            x (`torch.Tensor`): Input batch of images.
Steven Liu's avatar
Steven Liu committed
344
            return_dict (`bool`, *optional*, defaults to `True`):
Dhruv Nair's avatar
Dhruv Nair committed
345
                Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Steven Liu's avatar
Steven Liu committed
346
347

        Returns:
Dhruv Nair's avatar
Dhruv Nair committed
348
349
350
            [`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
                If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
                `tuple` is returned.
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        """
        overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
        row_limit = self.tile_latent_min_size - blend_extent

        # Split the image into 512x512 tiles and encode them separately.
        rows = []
        for i in range(0, x.shape[2], overlap_size):
            row = []
            for j in range(0, x.shape[3], overlap_size):
                tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
                tile = self.encoder(tile)
                tile = self.quant_conv(tile)
                row.append(tile)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=3))

        moments = torch.cat(result_rows, dim=2)
        posterior = DiagonalGaussianDistribution(moments)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

387
    def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
Steven Liu's avatar
Steven Liu committed
388
389
        r"""
        Decode a batch of images using a tiled decoder.
390

391
        Args:
392
            z (`torch.Tensor`): Input batch of latent vectors.
Steven Liu's avatar
Steven Liu committed
393
394
395
396
397
398
399
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
        """
        overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
        row_limit = self.tile_sample_min_size - blend_extent

        # Split z into overlapping 64x64 tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, z.shape[2], overlap_size):
            row = []
            for j in range(0, z.shape[3], overlap_size):
                tile = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
                tile = self.post_quant_conv(tile)
                decoded = self.decoder(tile)
                row.append(decoded)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=3))

        dec = torch.cat(result_rows, dim=2)
        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

435
436
    def forward(
        self,
437
        sample: torch.Tensor,
438
439
440
        sample_posterior: bool = False,
        return_dict: bool = True,
        generator: Optional[torch.Generator] = None,
441
    ) -> Union[DecoderOutput, torch.Tensor]:
442
443
        r"""
        Args:
444
            sample (`torch.Tensor`): Input sample.
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
            sample_posterior (`bool`, *optional*, defaults to `False`):
                Whether to sample from the posterior.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
        """
        x = sample
        posterior = self.encode(x).latent_dist
        if sample_posterior:
            z = posterior.sample(generator=generator)
        else:
            z = posterior.mode()
        dec = self.decode(z).sample

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)
462

463
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
464
465
    def fuse_qkv_projections(self):
        """
466
467
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>
        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

487
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
488
489
490
491
492
493
494
495
496
497
498
499
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)