unet_2d_condition_flax.py 11.8 KB
Newer Older
1
2
from typing import Tuple, Union

3
import flax
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict

from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..modeling_flax_utils import FlaxModelMixin
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .unet_blocks_flax import (
    FlaxCrossAttnDownBlock2D,
    FlaxCrossAttnUpBlock2D,
    FlaxDownBlock2D,
    FlaxUNetMidBlock2DCrossAttn,
    FlaxUpBlock2D,
)


22
@flax.struct.dataclass
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
class FlaxUNet2DConditionOutput(BaseOutput):
    """
    Args:
        sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)`):
            Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: jnp.ndarray


@flax_register_to_config
class FlaxUNet2DConditionModel(nn.Module, FlaxModelMixin, ConfigMixin):
    r"""
    FlaxUNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a
    timestep and returns sample shaped output.

    This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for the generic methods the library
    implements for all the models (such as downloading or saving, etc.)

Younes Belkada's avatar
Younes Belkada committed
42
43
44
45
46
47
48
49
50
51
    Also, this model is a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
    subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to
    general usage and behavior.

    Finally, this model supports inherent JAX features such as:
    - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
    - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
    - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
    - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)

52
    Parameters:
Younes Belkada's avatar
Younes Belkada committed
53
54
55
56
57
58
        sample_size (`int`, *optional*):
            The size of the input sample.
        in_channels (`int`, *optional*, defaults to 4):
            The number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4):
            The number of channels in the output.
59
60
61
62
63
64
65
66
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use. The corresponding class names will be: "FlaxCrossAttnDownBlock2D",
            "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D"
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
            The tuple of upsample blocks to use. The corresponding class names will be: "FlaxUpBlock2D",
            "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D"
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
Younes Belkada's avatar
Younes Belkada committed
67
68
69
70
71
72
73
74
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        attention_head_dim (`int`, *optional*, defaults to 8):
            The dimension of the attention heads.
        cross_attention_dim (`int`, *optional*, defaults to 768):
            The dimension of the cross attention features.
        dropout (`float`, *optional*, defaults to 0):
            Dropout probability for down, up and bottleneck blocks.
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    """

    sample_size: int = 32
    in_channels: int = 4
    out_channels: int = 4
    down_block_types: Tuple[str] = (
        "CrossAttnDownBlock2D",
        "CrossAttnDownBlock2D",
        "CrossAttnDownBlock2D",
        "DownBlock2D",
    )
    up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
    block_out_channels: Tuple[int] = (320, 640, 1280, 1280)
    layers_per_block: int = 2
    attention_head_dim: int = 8
    cross_attention_dim: int = 1280
    dropout: float = 0.0
    dtype: jnp.dtype = jnp.float32
93
    freq_shift: int = 0
94
95
96

    def init_weights(self, rng: jax.random.PRNGKey) -> FrozenDict:
        # init input tensors
97
        sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        sample = jnp.zeros(sample_shape, dtype=jnp.float32)
        timesteps = jnp.ones((1,), dtype=jnp.int32)
        encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32)

        params_rng, dropout_rng = jax.random.split(rng)
        rngs = {"params": params_rng, "dropout": dropout_rng}

        return self.init(rngs, sample, timesteps, encoder_hidden_states)["params"]

    def setup(self):
        block_out_channels = self.block_out_channels
        time_embed_dim = block_out_channels[0] * 4

        # input
        self.conv_in = nn.Conv(
            block_out_channels[0],
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        # time
121
        self.time_proj = FlaxTimesteps(block_out_channels[0], freq_shift=self.config.freq_shift)
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype)

        # down
        down_blocks = []
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(self.down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            if down_block_type == "CrossAttnDownBlock2D":
                down_block = FlaxCrossAttnDownBlock2D(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    dropout=self.dropout,
                    num_layers=self.layers_per_block,
                    attn_num_head_channels=self.attention_head_dim,
                    add_downsample=not is_final_block,
                    dtype=self.dtype,
                )
            else:
                down_block = FlaxDownBlock2D(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    dropout=self.dropout,
                    num_layers=self.layers_per_block,
                    add_downsample=not is_final_block,
                    dtype=self.dtype,
                )

            down_blocks.append(down_block)
        self.down_blocks = down_blocks

        # mid
        self.mid_block = FlaxUNetMidBlock2DCrossAttn(
            in_channels=block_out_channels[-1],
            dropout=self.dropout,
            attn_num_head_channels=self.attention_head_dim,
            dtype=self.dtype,
        )

        # up
        up_blocks = []
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(self.up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            is_final_block = i == len(block_out_channels) - 1

            if up_block_type == "CrossAttnUpBlock2D":
                up_block = FlaxCrossAttnUpBlock2D(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    prev_output_channel=prev_output_channel,
                    num_layers=self.layers_per_block + 1,
                    attn_num_head_channels=self.attention_head_dim,
                    add_upsample=not is_final_block,
                    dropout=self.dropout,
                    dtype=self.dtype,
                )
            else:
                up_block = FlaxUpBlock2D(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    prev_output_channel=prev_output_channel,
                    num_layers=self.layers_per_block + 1,
                    add_upsample=not is_final_block,
                    dropout=self.dropout,
                    dtype=self.dtype,
                )

            up_blocks.append(up_block)
            prev_output_channel = output_channel
        self.up_blocks = up_blocks

        # out
        self.conv_norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-5)
        self.conv_out = nn.Conv(
            self.out_channels,
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

    def __call__(
        self,
        sample,
        timesteps,
        encoder_hidden_states,
        return_dict: bool = True,
        train: bool = False,
    ) -> Union[FlaxUNet2DConditionOutput, Tuple]:
        """r
        Args:
            sample (`jnp.ndarray`): (channel, height, width) noisy inputs tensor
            timestep (`jnp.ndarray` or `float` or `int`): timesteps
            encoder_hidden_states (`jnp.ndarray`): (channel, height, width) encoder hidden states
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of a
                plain tuple.
            train (`bool`, *optional*, defaults to `False`):
                Use deterministic functions and disable dropout when not training.

        Returns:
            [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`:
            [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.
        """
        # 1. time
235
236
237
238
239
240
        if not isinstance(timesteps, jnp.ndarray):
            timesteps = jnp.array([timesteps], dtype=jnp.int32)
        elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0:
            timesteps = timesteps.astype(dtype=jnp.float32)
            timesteps = jnp.expand_dims(timesteps, 0)

241
242
243
244
        t_emb = self.time_proj(timesteps)
        t_emb = self.time_embedding(t_emb)

        # 2. pre-process
245
        sample = jnp.transpose(sample, (0, 2, 3, 1))
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for down_block in self.down_blocks:
            if isinstance(down_block, FlaxCrossAttnDownBlock2D):
                sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train)
            else:
                sample, res_samples = down_block(sample, t_emb, deterministic=not train)
            down_block_res_samples += res_samples

        # 4. mid
        sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train)

        # 5. up
        for up_block in self.up_blocks:
            res_samples = down_block_res_samples[-(self.layers_per_block + 1) :]
            down_block_res_samples = down_block_res_samples[: -(self.layers_per_block + 1)]
            if isinstance(up_block, FlaxCrossAttnUpBlock2D):
                sample = up_block(
                    sample,
                    temb=t_emb,
                    encoder_hidden_states=encoder_hidden_states,
                    res_hidden_states_tuple=res_samples,
                    deterministic=not train,
                )
            else:
                sample = up_block(sample, temb=t_emb, res_hidden_states_tuple=res_samples, deterministic=not train)

        # 6. post-process
        sample = self.conv_norm_out(sample)
        sample = nn.silu(sample)
        sample = self.conv_out(sample)
279
        sample = jnp.transpose(sample, (0, 3, 1, 2))
280
281
282
283
284

        if not return_dict:
            return (sample,)

        return FlaxUNet2DConditionOutput(sample=sample)