pipeline_unclip.py 21.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 Kakao Brain and The HuggingFace Team. All rights reserved.
Will Berman's avatar
Will Berman committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
16
from typing import List, Optional, Tuple, Union
Will Berman's avatar
Will Berman committed
17
18
19
20

import torch
from torch.nn import functional as F
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
21
from transformers.models.clip.modeling_clip import CLIPTextModelOutput
Will Berman's avatar
Will Berman committed
22

23
24
from ...models import PriorTransformer, UNet2DConditionModel, UNet2DModel
from ...schedulers import UnCLIPScheduler
25
from ...utils import logging, randn_tensor
YiYi Xu's avatar
YiYi Xu committed
26
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
Will Berman's avatar
Will Berman committed
27
28
29
30
31
32
33
from .text_proj import UnCLIPTextProjModel


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class UnCLIPPipeline(DiffusionPipeline):
Will Berman's avatar
Will Berman committed
34
    """
35
    Pipeline for text-to-image generation using unCLIP.
Will Berman's avatar
Will Berman committed
36

37
38
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Will Berman's avatar
Will Berman committed
39
40

    Args:
41
        text_encoder ([`~transformers.CLIPTextModelWithProjection`]):
Will Berman's avatar
Will Berman committed
42
            Frozen text-encoder.
43
44
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
Will Berman's avatar
Will Berman committed
45
        prior ([`PriorTransformer`]):
46
            The canonical unCLIP prior to approximate the image embedding from the text embedding.
Will Berman's avatar
Will Berman committed
47
48
        text_proj ([`UnCLIPTextProjModel`]):
            Utility class to prepare and combine the embeddings before they are passed to the decoder.
Will Berman's avatar
Will Berman committed
49
50
51
        decoder ([`UNet2DConditionModel`]):
            The decoder to invert the image embedding into an image.
        super_res_first ([`UNet2DModel`]):
52
            Super resolution UNet. Used in all but the last step of the super resolution diffusion process.
Will Berman's avatar
Will Berman committed
53
        super_res_last ([`UNet2DModel`]):
54
            Super resolution UNet. Used in the last step of the super resolution diffusion process.
Will Berman's avatar
Will Berman committed
55
        prior_scheduler ([`UnCLIPScheduler`]):
56
            Scheduler used in the prior denoising process (a modified [`DDPMScheduler`]).
Will Berman's avatar
Will Berman committed
57
        decoder_scheduler ([`UnCLIPScheduler`]):
58
            Scheduler used in the decoder denoising process (a modified [`DDPMScheduler`]).
Will Berman's avatar
Will Berman committed
59
        super_res_scheduler ([`UnCLIPScheduler`]):
60
            Scheduler used in the super resolution denoising process (a modified [`DDPMScheduler`]).
Will Berman's avatar
Will Berman committed
61
62
63

    """

64
65
    _exclude_from_cpu_offload = ["prior"]

Will Berman's avatar
Will Berman committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    prior: PriorTransformer
    decoder: UNet2DConditionModel
    text_proj: UnCLIPTextProjModel
    text_encoder: CLIPTextModelWithProjection
    tokenizer: CLIPTokenizer
    super_res_first: UNet2DModel
    super_res_last: UNet2DModel

    prior_scheduler: UnCLIPScheduler
    decoder_scheduler: UnCLIPScheduler
    super_res_scheduler: UnCLIPScheduler

    def __init__(
        self,
        prior: PriorTransformer,
        decoder: UNet2DConditionModel,
        text_encoder: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        text_proj: UnCLIPTextProjModel,
        super_res_first: UNet2DModel,
        super_res_last: UNet2DModel,
        prior_scheduler: UnCLIPScheduler,
        decoder_scheduler: UnCLIPScheduler,
        super_res_scheduler: UnCLIPScheduler,
    ):
        super().__init__()

        self.register_modules(
            prior=prior,
            decoder=decoder,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            text_proj=text_proj,
            super_res_first=super_res_first,
            super_res_last=super_res_last,
            prior_scheduler=prior_scheduler,
            decoder_scheduler=decoder_scheduler,
            super_res_scheduler=super_res_scheduler,
        )

    def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
        if latents is None:
108
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
Will Berman's avatar
Will Berman committed
109
110
111
112
113
114
115
116
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        latents = latents * scheduler.init_noise_sigma
        return latents

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
        text_attention_mask: Optional[torch.Tensor] = None,
    ):
        if text_model_output is None:
            batch_size = len(prompt) if isinstance(prompt, list) else 1
            # get prompt text embeddings
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
133
                truncation=True,
134
                return_tensors="pt",
Will Berman's avatar
Will Berman committed
135
            )
136
137
138
            text_input_ids = text_inputs.input_ids
            text_mask = text_inputs.attention_mask.bool().to(device)

139
140
141
142
143
144
145
146
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
147
148
149
150
151
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )
                text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
Will Berman's avatar
Will Berman committed
152

153
            text_encoder_output = self.text_encoder(text_input_ids.to(device))
Will Berman's avatar
Will Berman committed
154

155
            prompt_embeds = text_encoder_output.text_embeds
156
157
158
159
            text_encoder_hidden_states = text_encoder_output.last_hidden_state

        else:
            batch_size = text_model_output[0].shape[0]
160
            prompt_embeds, text_encoder_hidden_states = text_model_output[0], text_model_output[1]
161
            text_mask = text_attention_mask
Will Berman's avatar
Will Berman committed
162

163
        prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
Will Berman's avatar
Will Berman committed
164
        text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
165
        text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
Will Berman's avatar
Will Berman committed
166
167
168
169
170
171
172

        if do_classifier_free_guidance:
            uncond_tokens = [""] * batch_size

            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
173
                max_length=self.tokenizer.model_max_length,
Will Berman's avatar
Will Berman committed
174
175
176
                truncation=True,
                return_tensors="pt",
            )
177
            uncond_text_mask = uncond_input.attention_mask.bool().to(device)
178
            negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device))
Will Berman's avatar
Will Berman committed
179

180
181
            negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds
            uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state
Will Berman's avatar
Will Berman committed
182
183
184

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method

185
186
187
            seq_len = negative_prompt_embeds.shape[1]
            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)
Will Berman's avatar
Will Berman committed
188
189
190
191
192
193

            seq_len = uncond_text_encoder_hidden_states.shape[1]
            uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
            uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
                batch_size * num_images_per_prompt, seq_len, -1
            )
194
            uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)
Will Berman's avatar
Will Berman committed
195
196
197
198
199
200

            # done duplicates

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
201
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
Will Berman's avatar
Will Berman committed
202
203
204
205
            text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])

            text_mask = torch.cat([uncond_text_mask, text_mask])

206
        return prompt_embeds, text_encoder_hidden_states, text_mask
Will Berman's avatar
Will Berman committed
207
208
209
210

    @torch.no_grad()
    def __call__(
        self,
211
        prompt: Optional[Union[str, List[str]]] = None,
Will Berman's avatar
Will Berman committed
212
213
214
215
        num_images_per_prompt: int = 1,
        prior_num_inference_steps: int = 25,
        decoder_num_inference_steps: int = 25,
        super_res_num_inference_steps: int = 7,
216
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
Will Berman's avatar
Will Berman committed
217
218
219
        prior_latents: Optional[torch.FloatTensor] = None,
        decoder_latents: Optional[torch.FloatTensor] = None,
        super_res_latents: Optional[torch.FloatTensor] = None,
220
221
        text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
        text_attention_mask: Optional[torch.Tensor] = None,
Will Berman's avatar
Will Berman committed
222
223
224
225
226
        prior_guidance_scale: float = 4.0,
        decoder_guidance_scale: float = 8.0,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
    ):
Will Berman's avatar
Will Berman committed
227
        """
228
        The call function to the pipeline for generation.
Will Berman's avatar
Will Berman committed
229
230
231

        Args:
            prompt (`str` or `List[str]`):
232
233
                The prompt or prompts to guide image generation. This can only be left undefined if `text_model_output`
                and `text_attention_mask` is passed.
Will Berman's avatar
Will Berman committed
234
235
236
237
238
239
240
241
242
243
244
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            prior_num_inference_steps (`int`, *optional*, defaults to 25):
                The number of denoising steps for the prior. More denoising steps usually lead to a higher quality
                image at the expense of slower inference.
            decoder_num_inference_steps (`int`, *optional*, defaults to 25):
                The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality
                image at the expense of slower inference.
            super_res_num_inference_steps (`int`, *optional*, defaults to 7):
                The number of denoising steps for super resolution. More denoising steps usually lead to a higher
                quality image at the expense of slower inference.
245
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
246
247
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
Will Berman's avatar
Will Berman committed
248
249
250
251
252
253
254
            prior_latents (`torch.FloatTensor` of shape (batch size, embeddings dimension), *optional*):
                Pre-generated noisy latents to be used as inputs for the prior.
            decoder_latents (`torch.FloatTensor` of shape (batch size, channels, height, width), *optional*):
                Pre-generated noisy latents to be used as inputs for the decoder.
            super_res_latents (`torch.FloatTensor` of shape (batch size, channels, super res height, super res width), *optional*):
                Pre-generated noisy latents to be used as inputs for the decoder.
            prior_guidance_scale (`float`, *optional*, defaults to 4.0):
255
256
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
Will Berman's avatar
Will Berman committed
257
            decoder_guidance_scale (`float`, *optional*, defaults to 4.0):
258
259
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
260
            text_model_output (`CLIPTextModelOutput`, *optional*):
261
262
263
                Pre-defined [`CLIPTextModel`] outputs that can be derived from the text encoder. Pre-defined text
                outputs can be passed for tasks like text embedding interpolations. Make sure to also pass
                `text_attention_mask` in this case. `prompt` can the be left `None`.
264
265
266
            text_attention_mask (`torch.Tensor`, *optional*):
                Pre-defined CLIP text attention mask that can be derived from the tokenizer. Pre-defined text attention
                masks are necessary when passing `text_model_output`.
Will Berman's avatar
Will Berman committed
267
            output_type (`str`, *optional*, defaults to `"pil"`):
268
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
Will Berman's avatar
Will Berman committed
269
            return_dict (`bool`, *optional*, defaults to `True`):
270
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
271
272
273
274
275

        Returns:
            [`~pipelines.ImagePipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
                returned where the first element is a list with the generated images.
Will Berman's avatar
Will Berman committed
276
        """
277
278
279
280
281
282
283
        if prompt is not None:
            if isinstance(prompt, str):
                batch_size = 1
            elif isinstance(prompt, list):
                batch_size = len(prompt)
            else:
                raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
Will Berman's avatar
Will Berman committed
284
        else:
285
286
            batch_size = text_model_output[0].shape[0]

287
        device = self._execution_device
Will Berman's avatar
Will Berman committed
288
289
290
291
292

        batch_size = batch_size * num_images_per_prompt

        do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0

293
        prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt(
294
            prompt, device, num_images_per_prompt, do_classifier_free_guidance, text_model_output, text_attention_mask
Will Berman's avatar
Will Berman committed
295
296
297
298
        )

        # prior

299
        self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device)
Will Berman's avatar
Will Berman committed
300
301
302
        prior_timesteps_tensor = self.prior_scheduler.timesteps

        embedding_dim = self.prior.config.embedding_dim
303

Will Berman's avatar
Will Berman committed
304
305
        prior_latents = self.prepare_latents(
            (batch_size, embedding_dim),
306
            prompt_embeds.dtype,
307
            device,
Will Berman's avatar
Will Berman committed
308
309
310
311
312
313
314
315
316
317
318
319
            generator,
            prior_latents,
            self.prior_scheduler,
        )

        for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents

            predicted_image_embedding = self.prior(
                latent_model_input,
                timestep=t,
320
                proj_embedding=prompt_embeds,
Will Berman's avatar
Will Berman committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
                encoder_hidden_states=text_encoder_hidden_states,
                attention_mask=text_mask,
            ).predicted_image_embedding

            if do_classifier_free_guidance:
                predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2)
                predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * (
                    predicted_image_embedding_text - predicted_image_embedding_uncond
                )

            if i + 1 == prior_timesteps_tensor.shape[0]:
                prev_timestep = None
            else:
                prev_timestep = prior_timesteps_tensor[i + 1]

            prior_latents = self.prior_scheduler.step(
                predicted_image_embedding,
                timestep=t,
                sample=prior_latents,
                generator=generator,
                prev_timestep=prev_timestep,
            ).prev_sample

        prior_latents = self.prior.post_process_latents(prior_latents)

        image_embeddings = prior_latents

        # done prior

        # decoder

        text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj(
            image_embeddings=image_embeddings,
354
            prompt_embeds=prompt_embeds,
Will Berman's avatar
Will Berman committed
355
356
357
358
            text_encoder_hidden_states=text_encoder_hidden_states,
            do_classifier_free_guidance=do_classifier_free_guidance,
        )

359
360
361
362
363
364
365
366
        if device.type == "mps":
            # HACK: MPS: There is a panic when padding bool tensors,
            # so cast to int tensor for the pad and back to bool afterwards
            text_mask = text_mask.type(torch.int)
            decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1)
            decoder_text_mask = decoder_text_mask.type(torch.bool)
        else:
            decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True)
Will Berman's avatar
Will Berman committed
367

368
        self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device)
Will Berman's avatar
Will Berman committed
369
370
        decoder_timesteps_tensor = self.decoder_scheduler.timesteps

371
372
373
        num_channels_latents = self.decoder.config.in_channels
        height = self.decoder.config.sample_size
        width = self.decoder.config.sample_size
374

Will Berman's avatar
Will Berman committed
375
376
377
        decoder_latents = self.prepare_latents(
            (batch_size, num_channels_latents, height, width),
            text_encoder_hidden_states.dtype,
378
            device,
Will Berman's avatar
Will Berman committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
            generator,
            decoder_latents,
            self.decoder_scheduler,
        )

        for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents

            noise_pred = self.decoder(
                sample=latent_model_input,
                timestep=t,
                encoder_hidden_states=text_encoder_hidden_states,
                class_labels=additive_clip_time_embeddings,
                attention_mask=decoder_text_mask,
            ).sample

            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1)
                noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1)
                noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond)
                noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)

            if i + 1 == decoder_timesteps_tensor.shape[0]:
                prev_timestep = None
            else:
                prev_timestep = decoder_timesteps_tensor[i + 1]

            # compute the previous noisy sample x_t -> x_t-1
            decoder_latents = self.decoder_scheduler.step(
410
                noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator
Will Berman's avatar
Will Berman committed
411
412
413
414
415
416
417
418
419
420
            ).prev_sample

        decoder_latents = decoder_latents.clamp(-1, 1)

        image_small = decoder_latents

        # done decoder

        # super res

421
        self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device)
Will Berman's avatar
Will Berman committed
422
423
        super_res_timesteps_tensor = self.super_res_scheduler.timesteps

424
425
426
        channels = self.super_res_first.config.in_channels // 2
        height = self.super_res_first.config.sample_size
        width = self.super_res_first.config.sample_size
427

Will Berman's avatar
Will Berman committed
428
429
430
        super_res_latents = self.prepare_latents(
            (batch_size, channels, height, width),
            image_small.dtype,
431
            device,
Will Berman's avatar
Will Berman committed
432
433
434
435
436
            generator,
            super_res_latents,
            self.super_res_scheduler,
        )

437
438
439
440
441
442
443
        if device.type == "mps":
            # MPS does not support many interpolations
            image_upscaled = F.interpolate(image_small, size=[height, width])
        else:
            interpolate_antialias = {}
            if "antialias" in inspect.signature(F.interpolate).parameters:
                interpolate_antialias["antialias"] = True
Will Berman's avatar
Will Berman committed
444

445
446
447
            image_upscaled = F.interpolate(
                image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias
            )
Will Berman's avatar
Will Berman committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

        for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)):
            # no classifier free guidance

            if i == super_res_timesteps_tensor.shape[0] - 1:
                unet = self.super_res_last
            else:
                unet = self.super_res_first

            latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1)

            noise_pred = unet(
                sample=latent_model_input,
                timestep=t,
            ).sample

            if i + 1 == super_res_timesteps_tensor.shape[0]:
                prev_timestep = None
            else:
                prev_timestep = super_res_timesteps_tensor[i + 1]

            # compute the previous noisy sample x_t -> x_t-1
            super_res_latents = self.super_res_scheduler.step(
471
                noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator
Will Berman's avatar
Will Berman committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
            ).prev_sample

        image = super_res_latents
        # done super res

        # post processing

        image = image * 0.5 + 0.5
        image = image.clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()

        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)