test_stable_diffusion.py 41 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16

17
import gc
18
import tempfile
19
import time
20
21
22
23
import unittest

import numpy as np
import torch
24
from huggingface_hub import hf_hub_download
25
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
26
27
28
29

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
30
    DPMSolverMultistepScheduler,
hlky's avatar
hlky committed
31
32
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
33
34
35
36
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
37
    logging,
38
)
1lint's avatar
1lint committed
39
from diffusers.models.attention_processor import AttnProcessor
40
from diffusers.utils import load_numpy, nightly, slow, torch_device
41
from diffusers.utils.testing_utils import CaptureLogger, require_torch_gpu
42

43
from ...models.test_models_unet_2d_condition import create_lora_layers
44
45
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
46

47
48
49
50

torch.backends.cuda.matmul.allow_tf32 = False


51
class StableDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
52
    pipeline_class = StableDiffusionPipeline
53
54
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
55

56
    def get_dummy_components(self):
57
        torch.manual_seed(0)
58
        unet = UNet2DConditionModel(
59
60
61
62
63
64
65
66
67
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
68
69
70
71
72
73
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
74
75
        )
        torch.manual_seed(0)
76
        vae = AutoencoderKL(
77
78
79
80
81
82
83
84
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
85
        text_encoder_config = CLIPTextConfig(
86
87
88
89
90
91
92
93
94
95
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
96
97
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
123
124
125
126

    def test_stable_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

127
128
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
129
        sd_pipe = sd_pipe.to(torch_device)
130
131
        sd_pipe.set_progress_bar_config(disable=None)

132
133
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
134
135
136
137
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

138
        assert image.shape == (1, 64, 64, 3)
139
        expected_slice = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864])
140
141
142

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    def test_stable_diffusion_lora(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        # forward 1
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        # set lora layers
        lora_attn_procs = create_lora_layers(sd_pipe.unet)
        sd_pipe.unet.set_attn_processor(lora_attn_procs)
        sd_pipe = sd_pipe.to(torch_device)

        # forward 2
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.0})
        image = output.images
        image_slice_1 = image[0, -3:, -3:, -1]

        # forward 3
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.5})
        image = output.images
        image_slice_2 = image[0, -3:, -3:, -1]

        assert np.abs(image_slice - image_slice_1).max() < 1e-2
        assert np.abs(image_slice - image_slice_2).max() > 1e-2

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    def test_stable_diffusion_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = sd_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=sd_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

    def test_stable_diffusion_negative_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        embeds = []
        for p in [prompt, negative_prompt]:
            text_inputs = sd_pipe.tokenizer(
                p,
                padding="max_length",
                max_length=sd_pipe.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_inputs = text_inputs["input_ids"].to(torch_device)

            embeds.append(sd_pipe.text_encoder(text_inputs)[0])

        inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

253
254
255
    def test_stable_diffusion_ddim_factor_8(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

256
257
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
258
259
260
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

261
262
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs, height=136, width=136)
263
264
265
266
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

267
268
        assert image.shape == (1, 136, 136, 3)
        expected_slice = np.array([0.5524, 0.5626, 0.6069, 0.4727, 0.386, 0.3995, 0.4613, 0.4328, 0.4269])
269
270
271
272
273

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
274
275
276
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = PNDMScheduler(skip_prk_steps=True)
277
278
279
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

280
281
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
282
283
284
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

285
        assert image.shape == (1, 64, 64, 3)
286
        expected_slice = np.array([0.5122, 0.5712, 0.4825, 0.5053, 0.5646, 0.4769, 0.5179, 0.4894, 0.4994])
287

288
289
290
291
292
293
294
295
296
297
298
299
300
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_no_safety_checker(self):
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
        )
        assert isinstance(pipe, StableDiffusionPipeline)
        assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
        assert pipe.safety_checker is None

        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

301
302
303
304
305
306
307
308
309
310
        # check that there's no error when saving a pipeline with one of the models being None
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)

        # sanity check that the pipeline still works
        assert pipe.safety_checker is None
        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

311
312
    def test_stable_diffusion_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
hlky's avatar
hlky committed
313

314
315
316
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
317
318
319
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

320
321
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
322
323
324
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

325
        assert image.shape == (1, 64, 64, 3)
326
        expected_slice = np.array([0.4873, 0.5443, 0.4845, 0.5004, 0.5549, 0.4850, 0.5191, 0.4941, 0.5065])
327

hlky's avatar
hlky committed
328
329
330
331
332
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler_ancestral(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

333
334
335
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
336
337
338
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

339
340
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
341
342
343
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

344
        assert image.shape == (1, 64, 64, 3)
345
        expected_slice = np.array([0.4872, 0.5444, 0.4846, 0.5003, 0.5549, 0.4850, 0.5189, 0.4941, 0.5067])
346

hlky's avatar
hlky committed
347
348
349
350
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
351

352
353
354
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
355
356
357
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

358
359
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
360
361
362
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

363
        assert image.shape == (1, 64, 64, 3)
364
        expected_slice = np.array([0.4873, 0.5443, 0.4845, 0.5004, 0.5549, 0.4850, 0.5191, 0.4941, 0.5065])
365

366
367
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

368
369
    def test_stable_diffusion_vae_slicing(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
370
371
372
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
373
374
375
376
377
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        image_count = 4

378
379
380
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_1 = sd_pipe(**inputs)
381
382
383

        # make sure sliced vae decode yields the same result
        sd_pipe.enable_vae_slicing()
384
385
386
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_2 = sd_pipe(**inputs)
387
388
389
390

        # there is a small discrepancy at image borders vs. full batch decode
        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 3e-3

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
    def test_stable_diffusion_vae_tiling(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        # make sure here that pndm scheduler skips prk
        components["safety_checker"] = None
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # Test that tiled decode at 512x512 yields the same result as the non-tiled decode
        generator = torch.Generator(device=device).manual_seed(0)
        output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        # make sure tiled vae decode yields the same result
        sd_pipe.enable_vae_tiling()
        generator = torch.Generator(device=device).manual_seed(0)
        output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 5e-1

414
415
416
417
418
419
        # test that tiled decode works with various shapes
        shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)]
        for shape in shapes:
            zeros = torch.zeros(shape).to(device)
            sd_pipe.vae.decode(zeros)

420
421
    def test_stable_diffusion_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
422
423
424
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        sd_pipe = StableDiffusionPipeline(**components)
425
426
427
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

428
        inputs = self.get_dummy_inputs(device)
429
        negative_prompt = "french fries"
430
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
431
432
433
434

        image = output.images
        image_slice = image[0, -3:, -3:, -1]

435
        assert image.shape == (1, 64, 64, 3)
436
        expected_slice = np.array([0.5114, 0.5706, 0.4772, 0.5028, 0.5637, 0.4732, 0.5169, 0.4881, 0.4977])
437

438
439
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

440
    def test_stable_diffusion_long_prompt(self):
441
442
443
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        do_classifier_free_guidance = True
        negative_prompt = None
        num_images_per_prompt = 1
        logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")

        prompt = 25 * "@"
        with CaptureLogger(logger) as cap_logger_3:
            text_embeddings_3 = sd_pipe._encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )

        prompt = 100 * "@"
        with CaptureLogger(logger) as cap_logger:
            text_embeddings = sd_pipe._encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )

        negative_prompt = "Hello"
        with CaptureLogger(logger) as cap_logger_2:
            text_embeddings_2 = sd_pipe._encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )

        assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
        assert text_embeddings.shape[1] == 77

        assert cap_logger.out == cap_logger_2.out
        # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
        assert cap_logger.out.count("@") == 25
        assert cap_logger_3.out == ""

478
    def test_stable_diffusion_height_width_opt(self):
479
480
481
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
482
483
484
485
486
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"

487
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
488
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
489
        assert image_shape == (64, 64)
490

491
        output = sd_pipe(prompt, num_inference_steps=1, height=96, width=96, output_type="np")
492
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
493
        assert image_shape == (96, 96)
494
495
496

        config = dict(sd_pipe.unet.config)
        config["sample_size"] = 96
Patrick von Platen's avatar
Patrick von Platen committed
497
        sd_pipe.unet = UNet2DConditionModel.from_config(config).to(torch_device)
498
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
499
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
500
        assert image_shape == (192, 192)
501

502
503

@slow
504
@require_torch_gpu
505
class StableDiffusionPipelineSlowTests(unittest.TestCase):
506
507
508
509
510
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

511
512
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
513
514
515
516
517
518
519
520
521
522
523
524
525
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_1_1_pndm(self):
526
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
527
528
529
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

530
531
532
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
533

534
535
536
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.43625, 0.43554, 0.36670, 0.40660, 0.39703, 0.38658, 0.43936, 0.43557, 0.40592])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
537

538
539
540
541
    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
542

543
544
545
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
546

547
548
549
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.57400, 0.47841, 0.31625, 0.63583, 0.58306, 0.55056, 0.50825, 0.56306, 0.55748])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
550

551
552
553
    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
554
555
556
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

557
558
559
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
560

561
562
563
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
564

565
566
567
568
569
570
571
572
573
    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
574
575

        assert image.shape == (1, 512, 512, 3)
576
577
        expected_slice = np.array([0.10542, 0.09620, 0.07332, 0.09015, 0.09382, 0.07597, 0.08496, 0.07806, 0.06455])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
578

579
580
581
582
583
    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
584

585
586
587
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
588
589

        assert image.shape == (1, 512, 512, 3)
590
591
        expected_slice = np.array([0.03503, 0.03494, 0.01087, 0.03128, 0.02552, 0.00803, 0.00742, 0.00372, 0.00000])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
592

593
    def test_stable_diffusion_attention_slicing(self):
594
        torch.cuda.reset_peak_memory_stats()
595
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
596
        pipe = pipe.to(torch_device)
597
598
        pipe.set_progress_bar_config(disable=None)

599
        # enable attention slicing
600
        pipe.enable_attention_slicing()
601
602
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_sliced = pipe(**inputs).images
603
604
605
606
607
608

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 3.75 GB is allocated
        assert mem_bytes < 3.75 * 10**9

609
        # disable slicing
610
        pipe.disable_attention_slicing()
611
612
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
613
614
615
616

        # make sure that more than 3.75 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 3.75 * 10**9
617
        assert np.abs(image_sliced - image).max() < 1e-3
618

619
620
    def test_stable_diffusion_vae_slicing(self):
        torch.cuda.reset_peak_memory_stats()
621
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
622
        pipe = pipe.to(torch_device)
623
624
625
626
627
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        # enable vae slicing
        pipe.enable_vae_slicing()
628
629
630
631
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image_sliced = pipe(**inputs).images
632
633
634
635
636
637
638
639

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 4 GB is allocated
        assert mem_bytes < 4e9

        # disable vae slicing
        pipe.disable_vae_slicing()
640
641
642
643
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image = pipe(**inputs).images
644
645
646
647
648

        # make sure that more than 4 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 4e9
        # There is a small discrepancy at the image borders vs. a fully batched version.
649
        assert np.abs(image_sliced - image).max() < 1e-2
650

651
652
653
654
655
656
657
658
659
660
661
662
663
    def test_stable_diffusion_vae_tiling(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.unet = pipe.unet.to(memory_format=torch.channels_last)
        pipe.vae = pipe.vae.to(memory_format=torch.channels_last)

        prompt = "a photograph of an astronaut riding a horse"

        # enable vae tiling
        pipe.enable_vae_tiling()
664
665
666
667
668
669
670
671
672
673
674
675
        pipe.enable_model_cpu_offload()
        generator = torch.Generator(device="cpu").manual_seed(0)
        output_chunked = pipe(
            [prompt],
            width=1024,
            height=1024,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
            output_type="numpy",
        )
        image_chunked = output_chunked.images
676
677
678
679
680

        mem_bytes = torch.cuda.max_memory_allocated()

        # disable vae tiling
        pipe.disable_vae_tiling()
681
682
683
684
685
686
687
688
689
690
691
        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipe(
            [prompt],
            width=1024,
            height=1024,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
            output_type="numpy",
        )
        image = output.images
692

693
        assert mem_bytes < 1e10
694
695
        assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-2

696
    def test_stable_diffusion_fp16_vs_autocast(self):
697
698
        # this test makes sure that the original model with autocast
        # and the new model with fp16 yield the same result
699
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
700
        pipe = pipe.to(torch_device)
701
702
        pipe.set_progress_bar_config(disable=None)

703
704
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_fp16 = pipe(**inputs).images
705
706

        with torch.autocast(torch_device):
707
708
            inputs = self.get_inputs(torch_device)
            image_autocast = pipe(**inputs).images
709
710

        # Make sure results are close enough
711
        diff = np.abs(image_fp16.flatten() - image_autocast.flatten())
712
713
714
715
        # They ARE different since ops are not run always at the same precision
        # however, they should be extremely close.
        assert diff.mean() < 2e-2

716
    def test_stable_diffusion_intermediate_state(self):
717
718
        number_of_steps = 0

719
720
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
721
722
            nonlocal number_of_steps
            number_of_steps += 1
723
            if step == 1:
724
725
726
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
727
728
729
730
731
                expected_slice = np.array(
                    [-0.5693, -0.3018, -0.9746, 0.0518, -0.8770, 0.7559, -1.7402, 0.1022, 1.1582]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
732
            elif step == 2:
733
734
735
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
736
737
738
739
740
                expected_slice = np.array(
                    [-0.1958, -0.2993, -1.0166, -0.5005, -0.4810, 0.6162, -0.9492, 0.6621, 1.4492]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
741

742
        callback_fn.has_been_called = False
743

744
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
745
746
747
748
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

749
750
751
752
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == inputs["num_inference_steps"]
753

754
    def test_stable_diffusion_low_cpu_mem_usage(self):
755
756
757
        pipeline_id = "CompVis/stable-diffusion-v1-4"

        start_time = time.time()
758
        pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16)
759
760
        pipeline_low_cpu_mem_usage.to(torch_device)
        low_cpu_mem_usage_time = time.time() - start_time
761
762

        start_time = time.time()
763
        _ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False)
764
        normal_load_time = time.time() - start_time
765

766
        assert 2 * low_cpu_mem_usage_time < normal_load_time
767

768
    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
769
770
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
771
        torch.cuda.reset_peak_memory_stats()
772

773
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
774
775
776
777
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()
778

779
780
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
781
782

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
783
784
        # make sure that less than 2.8 GB is allocated
        assert mem_bytes < 2.8 * 10**9
785

786
787
788
789
790
791
792
793
794
795
796
797
798
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        )
799
        pipe.unet.set_default_attn_processor()
800
801
802
803
804
805
806
807
808
809
810
811
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        outputs = pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        )
812
        pipe.unet.set_default_attn_processor()
813
814
815
816
817
818
819

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
820
821
        inputs = self.get_inputs(torch_device, dtype=torch.float16)

822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
        outputs_offloaded = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

        assert np.abs(outputs.images - outputs_offloaded.images).max() < 1e-3
        assert mem_bytes_offloaded < mem_bytes
        assert mem_bytes_offloaded < 3.5 * 10**9
        for module in pipe.text_encoder, pipe.unet, pipe.vae, pipe.safety_checker:
            assert module.device == torch.device("cpu")

        # With attention slicing
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_attention_slicing()
        _ = pipe(**inputs)
        mem_bytes_slicing = torch.cuda.max_memory_allocated()

        assert mem_bytes_slicing < mem_bytes_offloaded
        assert mem_bytes_slicing < 3 * 10**9

843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
    def test_stable_diffusion_textual_inversion(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
866
        assert max_diff < 5e-2
867

868

1lint's avatar
1lint committed
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
@slow
@require_torch_gpu
class StableDiffusionPipelineCkptTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_download_from_hub(self):
        ckpt_paths = [
            "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
            "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix_base.ckpt",
        ]

        for ckpt_path in ckpt_paths:
            pipe = StableDiffusionPipeline.from_ckpt(ckpt_path, torch_dtype=torch.float16)
            pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
            pipe.to("cuda")

        image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_local(self):
        filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-5-pruned-emaonly.ckpt")

        pipe = StableDiffusionPipeline.from_ckpt(filename, torch_dtype=torch.float16)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_ckpt_diff_format_is_same(self):
        ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt"

        pipe = StableDiffusionPipeline.from_ckpt(ckpt_path)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(0)
        image_ckpt = pipe("a turtle", num_inference_steps=5, generator=generator, output_type="np").images[0]

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(0)
        image = pipe("a turtle", num_inference_steps=5, generator=generator, output_type="np").images[0]

        assert np.max(np.abs(image - image_ckpt)) < 1e-4


925
926
927
928
929
930
931
932
@nightly
@require_torch_gpu
class StableDiffusionPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

933
934
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_1_5_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_5_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_euler(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_euler.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_dpm_multi.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3