safety_checker.py 5.42 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Suraj Patil's avatar
Suraj Patil committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import numpy as np
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel

from ...utils import logging


logger = logging.get_logger(__name__)


def cosine_distance(image_embeds, text_embeds):
    normalized_image_embeds = nn.functional.normalize(image_embeds)
    normalized_text_embeds = nn.functional.normalize(text_embeds)
29
    return torch.mm(normalized_image_embeds, normalized_text_embeds.t())
Suraj Patil's avatar
Suraj Patil committed
30
31
32
33
34


class StableDiffusionSafetyChecker(PreTrainedModel):
    config_class = CLIPConfig

35
36
    _no_split_modules = ["CLIPEncoderLayer"]

Suraj Patil's avatar
Suraj Patil committed
37
38
39
40
41
42
43
44
45
    def __init__(self, config: CLIPConfig):
        super().__init__(config)

        self.vision_model = CLIPVisionModel(config.vision_config)
        self.visual_projection = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=False)

        self.concept_embeds = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=False)
        self.special_care_embeds = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=False)

46
47
        self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False)
        self.special_care_embeds_weights = nn.Parameter(torch.ones(3), requires_grad=False)
Suraj Patil's avatar
Suraj Patil committed
48
49
50
51
52
53

    @torch.no_grad()
    def forward(self, clip_input, images):
        pooled_output = self.vision_model(clip_input)[1]  # pooled_output
        image_embeds = self.visual_projection(pooled_output)

54
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
55
56
        special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().float().numpy()
        cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy()
Suraj Patil's avatar
Suraj Patil committed
57
58
59
60
61

        result = []
        batch_size = image_embeds.shape[0]
        for i in range(batch_size):
            result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []}
62
63
64
65

            # increase this value to create a stronger `nfsw` filter
            # at the cost of increasing the possibility of filtering benign images
            adjustment = 0.0
Suraj Patil's avatar
Suraj Patil committed
66

67
68
69
70
71
72
            for concept_idx in range(len(special_cos_dist[0])):
                concept_cos = special_cos_dist[i][concept_idx]
                concept_threshold = self.special_care_embeds_weights[concept_idx].item()
                result_img["special_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
                if result_img["special_scores"][concept_idx] > 0:
                    result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]})
Suraj Patil's avatar
Suraj Patil committed
73
74
                    adjustment = 0.01

75
76
77
78
79
80
            for concept_idx in range(len(cos_dist[0])):
                concept_cos = cos_dist[i][concept_idx]
                concept_threshold = self.concept_embeds_weights[concept_idx].item()
                result_img["concept_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3)
                if result_img["concept_scores"][concept_idx] > 0:
                    result_img["bad_concepts"].append(concept_idx)
Suraj Patil's avatar
Suraj Patil committed
81
82
83

            result.append(result_img)

Suraj Patil's avatar
Suraj Patil committed
84
        has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
Suraj Patil's avatar
Suraj Patil committed
85
86
87
88
89
90
91
92
93
94
95
96

        for idx, has_nsfw_concept in enumerate(has_nsfw_concepts):
            if has_nsfw_concept:
                images[idx] = np.zeros(images[idx].shape)  # black image

        if any(has_nsfw_concepts):
            logger.warning(
                "Potential NSFW content was detected in one or more images. A black image will be returned instead."
                " Try again with a different prompt and/or seed."
            )

        return images, has_nsfw_concepts
97

98
    @torch.no_grad()
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    def forward_onnx(self, clip_input: torch.FloatTensor, images: torch.FloatTensor):
        pooled_output = self.vision_model(clip_input)[1]  # pooled_output
        image_embeds = self.visual_projection(pooled_output)

        special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds)
        cos_dist = cosine_distance(image_embeds, self.concept_embeds)

        # increase this value to create a stronger `nsfw` filter
        # at the cost of increasing the possibility of filtering benign images
        adjustment = 0.0

        special_scores = special_cos_dist - self.special_care_embeds_weights + adjustment
        # special_scores = special_scores.round(decimals=3)
        special_care = torch.any(special_scores > 0, dim=1)
        special_adjustment = special_care * 0.01
        special_adjustment = special_adjustment.unsqueeze(1).expand(-1, cos_dist.shape[1])

        concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment
        # concept_scores = concept_scores.round(decimals=3)
        has_nsfw_concepts = torch.any(concept_scores > 0, dim=1)

        images[has_nsfw_concepts] = 0.0  # black image

        return images, has_nsfw_concepts