scheduling_ddpm.py 6.07 KB
Newer Older
Patrick von Platen's avatar
improve  
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
anton-l's avatar
anton-l committed
14
import math
Patrick von Platen's avatar
Patrick von Platen committed
15

Patrick von Platen's avatar
Patrick von Platen committed
16
import numpy as np
Patrick von Platen's avatar
improve  
Patrick von Platen committed
17

Patrick von Platen's avatar
Patrick von Platen committed
18
from ..configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
19
from .scheduling_utils import SchedulerMixin, betas_for_alpha_bar, linear_beta_schedule
Patrick von Platen's avatar
improve  
Patrick von Platen committed
20
21


Patrick von Platen's avatar
Patrick von Platen committed
22
class DDPMScheduler(SchedulerMixin, ConfigMixin):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23
24
25
26
27
28
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
29
30
        trained_betas=None,
        timestep_values=None,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
31
        variance_type="fixed_small",
Patrick von Platen's avatar
Patrick von Platen committed
32
        clip_predicted_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
33
        tensor_format="np",
Patrick von Platen's avatar
improve  
Patrick von Platen committed
34
35
36
37
38
39
40
    ):
        super().__init__()
        self.register(
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
41
42
            trained_betas=trained_betas,
            timestep_values=timestep_values,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
43
            variance_type=variance_type,
Patrick von Platen's avatar
Patrick von Platen committed
44
            clip_predicted_image=clip_predicted_image,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
45
        )
Patrick von Platen's avatar
Patrick von Platen committed
46
        self.timesteps = int(timesteps)
47
        self.timestep_values = timestep_values  # save the fixed timestep values for BDDM
Patrick von Platen's avatar
Patrick von Platen committed
48
        self.clip_image = clip_predicted_image
Patrick von Platen's avatar
Patrick von Platen committed
49
        self.variance_type = variance_type
Patrick von Platen's avatar
improve  
Patrick von Platen committed
50

51
52
53
        if trained_betas is not None:
            self.betas = np.asarray(trained_betas)
        elif beta_schedule == "linear":
Patrick von Platen's avatar
Patrick von Platen committed
54
            self.betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
anton-l's avatar
anton-l committed
55
56
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
Patrick von Platen's avatar
Patrick von Platen committed
57
            self.betas = betas_for_alpha_bar(
anton-l's avatar
anton-l committed
58
59
60
                timesteps,
                lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
            )
Patrick von Platen's avatar
improve  
Patrick von Platen committed
61
62
63
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

    #        self.register_buffer("betas", betas.to(torch.float32))
    #        self.register_buffer("alphas", alphas.to(torch.float32))
    #        self.register_buffer("alphas_cumprod", alphas_cumprod.to(torch.float32))

    #        alphas_cumprod_prev = torch.nn.functional.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
    # TODO(PVP) - check how much of these is actually necessary!
    # LDM only uses "fixed_small"; glide seems to use a weird mix of the two, ...
    # https://github.com/openai/glide-text2im/blob/69b530740eb6cef69442d6180579ef5ba9ef063e/glide_text2im/gaussian_diffusion.py#L246
    #        variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
    #        if variance_type == "fixed_small":
    #            log_variance = torch.log(variance.clamp(min=1e-20))
    #        elif variance_type == "fixed_large":
    #            log_variance = torch.log(torch.cat([variance[1:2], betas[1:]], dim=0))
    #
    #
    #        self.register_buffer("log_variance", log_variance.to(torch.float32))
Patrick von Platen's avatar
improve  
Patrick von Platen committed
86
87
88
89
90
91
92
93
94

    def get_alpha(self, time_step):
        return self.alphas[time_step]

    def get_beta(self, time_step):
        return self.betas[time_step]

    def get_alpha_prod(self, time_step):
        if time_step < 0:
Patrick von Platen's avatar
Patrick von Platen committed
95
            return self.one
Patrick von Platen's avatar
improve  
Patrick von Platen committed
96
97
        return self.alphas_cumprod[time_step]

Patrick von Platen's avatar
Patrick von Platen committed
98
99
100
101
102
103
104
    def get_variance(self, t):
        alpha_prod_t = self.get_alpha_prod(t)
        alpha_prod_t_prev = self.get_alpha_prod(t - 1)

        # For t > 0, compute predicted variance βt (see formala (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
        # and sample from it to get previous image
        # x_{t-1} ~ N(pred_prev_image, variance) == add variane to pred_image
Patrick von Platen's avatar
Patrick von Platen committed
105
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.get_beta(t)
Patrick von Platen's avatar
Patrick von Platen committed
106
107
108

        # hacks - were probs added for training stability
        if self.variance_type == "fixed_small":
Patrick von Platen's avatar
Patrick von Platen committed
109
            variance = self.clip(variance, min_value=1e-20)
Patrick von Platen's avatar
Patrick von Platen committed
110
111
        elif self.variance_type == "fixed_large":
            variance = self.get_beta(t)
Patrick von Platen's avatar
Patrick von Platen committed
112
113
114

        return variance

Patrick von Platen's avatar
Patrick von Platen committed
115
    def step(self, residual, image, t):
Patrick von Platen's avatar
Patrick von Platen committed
116
117
118
119
120
121
122
123
        # 1. compute alphas, betas
        alpha_prod_t = self.get_alpha_prod(t)
        alpha_prod_t_prev = self.get_alpha_prod(t - 1)
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # 2. compute predicted original image from predicted noise also called
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
Patrick von Platen's avatar
Patrick von Platen committed
124
        pred_original_image = (image - beta_prod_t ** (0.5) * residual) / alpha_prod_t ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
125
126
127

        # 3. Clip "predicted x_0"
        if self.clip_predicted_image:
Patrick von Platen's avatar
Patrick von Platen committed
128
            pred_original_image = self.clip(pred_original_image, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
129
130
131

        # 4. Compute coefficients for pred_original_image x_0 and current image x_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
Patrick von Platen's avatar
Patrick von Platen committed
132
133
        pred_original_image_coeff = (alpha_prod_t_prev ** (0.5) * self.get_beta(t)) / beta_prod_t
        current_image_coeff = self.get_alpha(t) ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
134
135
136
137
138
139
140

        # 5. Compute predicted previous image µ_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
        pred_prev_image = pred_original_image_coeff * pred_original_image + current_image_coeff * image

        return pred_prev_image

anton-l's avatar
anton-l committed
141
    def forward_step(self, original_image, noise, t):
anton-l's avatar
anton-l committed
142
143
144
        sqrt_alpha_prod = self.get_alpha_prod(t) ** 0.5
        sqrt_one_minus_alpha_prod = (1 - self.get_alpha_prod(t)) ** 0.5
        noisy_image = sqrt_alpha_prod * original_image + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
145
146
        return noisy_image

Patrick von Platen's avatar
improve  
Patrick von Platen committed
147
    def __len__(self):
Patrick von Platen's avatar
Patrick von Platen committed
148
        return self.timesteps