test_kandinsky_inpaint.py 11.5 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
# coding=utf-8
2
# Copyright 2025 HuggingFace Inc.
YiYi Xu's avatar
YiYi Xu committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
21
import pytest
YiYi Xu's avatar
YiYi Xu committed
22
23
24
25
26
27
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast

from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNet2DConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
28
from diffusers.utils import is_transformers_version
29
30

from ...testing_utils import (
31
    backend_empty_cache,
Dhruv Nair's avatar
Dhruv Nair committed
32
33
34
35
    enable_full_determinism,
    floats_tensor,
    load_image,
    load_numpy,
36
    nightly,
37
    require_torch_accelerator,
Dhruv Nair's avatar
Dhruv Nair committed
38
39
    torch_device,
)
YiYi Xu's avatar
YiYi Xu committed
40
41
42
43
44
45
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference


enable_full_determinism()


46
class Dummies:
YiYi Xu's avatar
YiYi Xu committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def cross_attention_dim(self):
65
        return 32
YiYi Xu's avatar
YiYi Xu committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

    @property
    def dummy_tokenizer(self):
        tokenizer = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = MCLIPConfig(
            numDims=self.cross_attention_dim,
            transformerDimensions=self.text_embedder_hidden_size,
            hidden_size=self.text_embedder_hidden_size,
            intermediate_size=37,
            num_attention_heads=4,
            num_hidden_layers=5,
            vocab_size=1005,
        )

        text_encoder = MultilingualCLIP(config)
        text_encoder = text_encoder.eval()

        return text_encoder

    @property
    def dummy_unet(self):
        torch.manual_seed(0)

        model_kwargs = {
            "in_channels": 9,
            # Out channels is double in channels because predicts mean and variance
            "out_channels": 8,
            "addition_embed_type": "text_image",
            "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
            "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
            "mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "layers_per_block": 1,
            "encoder_hid_dim": self.text_embedder_hidden_size,
            "encoder_hid_dim_type": "text_image_proj",
            "cross_attention_dim": self.cross_attention_dim,
            "attention_head_dim": 4,
            "resnet_time_scale_shift": "scale_shift",
            "class_embed_type": None,
        }

        model = UNet2DConditionModel(**model_kwargs)
        return model

    @property
    def dummy_movq_kwargs(self):
        return {
            "block_out_channels": [32, 64],
            "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
            "in_channels": 3,
            "latent_channels": 4,
            "layers_per_block": 1,
            "norm_num_groups": 8,
            "norm_type": "spatial",
            "num_vq_embeddings": 12,
            "out_channels": 3,
            "up_block_types": [
                "AttnUpDecoderBlock2D",
                "UpDecoderBlock2D",
            ],
            "vq_embed_dim": 4,
        }

    @property
    def dummy_movq(self):
        torch.manual_seed(0)
        model = VQModel(**self.dummy_movq_kwargs)
        return model

    def get_dummy_components(self):
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        unet = self.dummy_unet
        movq = self.dummy_movq

        scheduler = DDIMScheduler(
            num_train_timesteps=1000,
            beta_schedule="linear",
            beta_start=0.00085,
            beta_end=0.012,
            clip_sample=False,
            set_alpha_to_one=False,
            steps_offset=1,
            prediction_type="epsilon",
            thresholding=False,
        )

        components = {
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "unet": unet,
            "scheduler": scheduler,
            "movq": movq,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed)).to(device)
        negative_image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(device)
        # create init_image
        image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256))
        # create mask
176
177
        mask = np.zeros((64, 64), dtype=np.float32)
        mask[:32, :32] = 1
YiYi Xu's avatar
YiYi Xu committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "horse",
            "image": init_image,
            "mask_image": mask,
            "image_embeds": image_embeds,
            "negative_image_embeds": negative_image_embeds,
            "generator": generator,
            "height": 64,
            "width": 64,
            "num_inference_steps": 2,
            "guidance_scale": 4.0,
            "output_type": "np",
        }
        return inputs

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

class KandinskyInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = KandinskyInpaintPipeline
    params = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"]
    batch_params = [
        "prompt",
        "negative_prompt",
        "image_embeds",
        "negative_image_embeds",
        "image",
        "mask_image",
    ]
    required_optional_params = [
        "generator",
        "height",
        "width",
        "latents",
        "guidance_scale",
        "negative_prompt",
        "num_inference_steps",
        "return_dict",
        "guidance_scale",
        "num_images_per_prompt",
        "output_type",
        "return_dict",
    ]
    test_xformers_attention = False

Marc Sun's avatar
Marc Sun committed
226
227
    supports_dduf = False

228
229
230
231
232
233
234
235
    def get_dummy_components(self):
        dummies = Dummies()
        return dummies.get_dummy_components()

    def get_dummy_inputs(self, device, seed=0):
        dummies = Dummies()
        return dummies.get_dummy_inputs(device=device, seed=seed)

236
237
238
    @pytest.mark.xfail(
        condition=is_transformers_version(">=", "4.56.2"), reason="Latest transformers changes the slices", strict=True
    )
YiYi Xu's avatar
YiYi Xu committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    def test_kandinsky_inpaint(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.images

        image_from_tuple = pipe(
            **self.get_dummy_inputs(device),
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)

262
        expected_slice = np.array([0.8222, 0.8896, 0.4373, 0.8088, 0.4905, 0.2609, 0.6816, 0.4291, 0.5129])
YiYi Xu's avatar
YiYi Xu committed
263

264
265
266
267
268
269
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2, (
            f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
        )
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2, (
            f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
        )
YiYi Xu's avatar
YiYi Xu committed
270
271
272
273

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

274
    @require_torch_accelerator
275
276
277
278
279
280
281
282
    def test_offloads(self):
        pipes = []
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(torch_device)
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
283
        sd_pipe.enable_model_cpu_offload(device=torch_device)
284
285
286
287
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
288
        sd_pipe.enable_sequential_cpu_offload(device=torch_device)
289
290
291
292
293
294
295
296
297
298
299
300
        pipes.append(sd_pipe)

        image_slices = []
        for pipe in pipes:
            inputs = self.get_dummy_inputs(torch_device)
            image = pipe(**inputs).images

            image_slices.append(image[0, -3:, -3:, -1].flatten())

        assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
        assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3

301
302
303
    def test_float16_inference(self):
        super().test_float16_inference(expected_max_diff=5e-1)

YiYi Xu's avatar
YiYi Xu committed
304

305
@nightly
306
@require_torch_accelerator
YiYi Xu's avatar
YiYi Xu committed
307
class KandinskyInpaintPipelineIntegrationTests(unittest.TestCase):
308
309
310
311
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
312
        backend_empty_cache(torch_device)
313

YiYi Xu's avatar
YiYi Xu committed
314
315
316
317
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
318
        backend_empty_cache(torch_device)
YiYi Xu's avatar
YiYi Xu committed
319
320
321
322
323
324
325
326

    def test_kandinsky_inpaint(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy"
        )

        init_image = load_image(
327
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png"
YiYi Xu's avatar
YiYi Xu committed
328
        )
329
330
        mask = np.zeros((768, 768), dtype=np.float32)
        mask[:250, 250:-250] = 1
YiYi Xu's avatar
YiYi Xu committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

        prompt = "a hat"

        pipe_prior = KandinskyPriorPipeline.from_pretrained(
            "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
        )
        pipe_prior.to(torch_device)

        pipeline = KandinskyInpaintPipeline.from_pretrained(
            "kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16
        )
        pipeline = pipeline.to(torch_device)
        pipeline.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
346
        image_emb, zero_image_emb = pipe_prior(
YiYi Xu's avatar
YiYi Xu committed
347
348
349
            prompt,
            generator=generator,
            num_inference_steps=5,
350
351
            negative_prompt="",
        ).to_tuple()
YiYi Xu's avatar
YiYi Xu committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

        output = pipeline(
            prompt,
            image=init_image,
            mask_image=mask,
            image_embeds=image_emb,
            negative_image_embeds=zero_image_emb,
            generator=generator,
            num_inference_steps=100,
            height=768,
            width=768,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (768, 768, 3)

        assert_mean_pixel_difference(image, expected_image)