test_kandinsky_img2img.py 13.4 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
# coding=utf-8
2
# Copyright 2025 HuggingFace Inc.
YiYi Xu's avatar
YiYi Xu committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
21
import pytest
YiYi Xu's avatar
YiYi Xu committed
22
23
24
25
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast

26
27
28
29
30
31
32
33
from diffusers import (
    DDIMScheduler,
    DDPMScheduler,
    KandinskyImg2ImgPipeline,
    KandinskyPriorPipeline,
    UNet2DConditionModel,
    VQModel,
)
YiYi Xu's avatar
YiYi Xu committed
34
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
35
from diffusers.utils import is_transformers_version
36
37

from ...testing_utils import (
38
    backend_empty_cache,
Dhruv Nair's avatar
Dhruv Nair committed
39
40
41
42
43
    enable_full_determinism,
    floats_tensor,
    load_image,
    load_numpy,
    nightly,
44
    require_torch_accelerator,
Dhruv Nair's avatar
Dhruv Nair committed
45
46
47
    slow,
    torch_device,
)
YiYi Xu's avatar
YiYi Xu committed
48
49
50
51
52
53
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference


enable_full_determinism()


54
class Dummies:
YiYi Xu's avatar
YiYi Xu committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def cross_attention_dim(self):
73
        return 32
YiYi Xu's avatar
YiYi Xu committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

    @property
    def dummy_tokenizer(self):
        tokenizer = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = MCLIPConfig(
            numDims=self.cross_attention_dim,
            transformerDimensions=self.text_embedder_hidden_size,
            hidden_size=self.text_embedder_hidden_size,
            intermediate_size=37,
            num_attention_heads=4,
            num_hidden_layers=5,
            vocab_size=1005,
        )

        text_encoder = MultilingualCLIP(config)
        text_encoder = text_encoder.eval()

        return text_encoder

    @property
    def dummy_unet(self):
        torch.manual_seed(0)

        model_kwargs = {
            "in_channels": 4,
            # Out channels is double in channels because predicts mean and variance
            "out_channels": 8,
            "addition_embed_type": "text_image",
            "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
            "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
            "mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "layers_per_block": 1,
            "encoder_hid_dim": self.text_embedder_hidden_size,
            "encoder_hid_dim_type": "text_image_proj",
            "cross_attention_dim": self.cross_attention_dim,
            "attention_head_dim": 4,
            "resnet_time_scale_shift": "scale_shift",
            "class_embed_type": None,
        }

        model = UNet2DConditionModel(**model_kwargs)
        return model

    @property
    def dummy_movq_kwargs(self):
        return {
            "block_out_channels": [32, 64],
            "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
            "in_channels": 3,
            "latent_channels": 4,
            "layers_per_block": 1,
            "norm_num_groups": 8,
            "norm_type": "spatial",
            "num_vq_embeddings": 12,
            "out_channels": 3,
            "up_block_types": [
                "AttnUpDecoderBlock2D",
                "UpDecoderBlock2D",
            ],
            "vq_embed_dim": 4,
        }

    @property
    def dummy_movq(self):
        torch.manual_seed(0)
        model = VQModel(**self.dummy_movq_kwargs)
        return model

    def get_dummy_components(self):
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        unet = self.dummy_unet
        movq = self.dummy_movq

        ddim_config = {
            "num_train_timesteps": 1000,
            "beta_schedule": "linear",
            "beta_start": 0.00085,
            "beta_end": 0.012,
            "clip_sample": False,
            "set_alpha_to_one": False,
            "steps_offset": 0,
            "prediction_type": "epsilon",
            "thresholding": False,
        }

        scheduler = DDIMScheduler(**ddim_config)

        components = {
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "unet": unet,
            "scheduler": scheduler,
            "movq": movq,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed)).to(device)
        negative_image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(device)
        # create init_image
        image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256))

        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "horse",
            "image": init_image,
            "image_embeds": image_embeds,
            "negative_image_embeds": negative_image_embeds,
            "generator": generator,
            "height": 64,
            "width": 64,
            "num_inference_steps": 10,
            "guidance_scale": 7.0,
            "strength": 0.2,
            "output_type": "np",
        }
        return inputs

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

class KandinskyImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = KandinskyImg2ImgPipeline
    params = ["prompt", "image_embeds", "negative_image_embeds", "image"]
    batch_params = [
        "prompt",
        "negative_prompt",
        "image_embeds",
        "negative_image_embeds",
        "image",
    ]
    required_optional_params = [
        "generator",
        "height",
        "width",
        "strength",
        "guidance_scale",
        "negative_prompt",
        "num_inference_steps",
        "return_dict",
        "guidance_scale",
        "num_images_per_prompt",
        "output_type",
        "return_dict",
    ]
    test_xformers_attention = False

Marc Sun's avatar
Marc Sun committed
232
233
    supports_dduf = False

234
235
236
237
238
239
240
241
    def get_dummy_components(self):
        dummies = Dummies()
        return dummies.get_dummy_components()

    def get_dummy_inputs(self, device, seed=0):
        dummies = Dummies()
        return dummies.get_dummy_inputs(device=device, seed=seed)

242
243
244
    @pytest.mark.xfail(
        condition=is_transformers_version(">=", "4.56.2"), reason="Latest transformers changes the slices", strict=True
    )
YiYi Xu's avatar
YiYi Xu committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    def test_kandinsky_img2img(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.images

        image_from_tuple = pipe(
            **self.get_dummy_inputs(device),
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)

268
        expected_slice = np.array([0.5816, 0.5872, 0.4634, 0.5982, 0.4767, 0.4710, 0.4669, 0.4717, 0.4966])
269
270
271
272
273
274
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2, (
            f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
        )
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2, (
            f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
        )
YiYi Xu's avatar
YiYi Xu committed
275

276
    @require_torch_accelerator
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    def test_offloads(self):
        pipes = []
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(torch_device)
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_model_cpu_offload()
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_sequential_cpu_offload()
        pipes.append(sd_pipe)

        image_slices = []
        for pipe in pipes:
            inputs = self.get_dummy_inputs(torch_device)
            image = pipe(**inputs).images

            image_slices.append(image[0, -3:, -3:, -1].flatten())

        assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
        assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3

303
304
305
    def test_dict_tuple_outputs_equivalent(self):
        super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)

YiYi Xu's avatar
YiYi Xu committed
306
307

@slow
308
@require_torch_accelerator
YiYi Xu's avatar
YiYi Xu committed
309
class KandinskyImg2ImgPipelineIntegrationTests(unittest.TestCase):
310
311
312
313
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
314
        backend_empty_cache(torch_device)
315

YiYi Xu's avatar
YiYi Xu committed
316
317
318
319
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
320
        backend_empty_cache(torch_device)
YiYi Xu's avatar
YiYi Xu committed
321
322
323
324
325
326
327
328

    def test_kandinsky_img2img(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/kandinsky/kandinsky_img2img_frog.npy"
        )

        init_image = load_image(
329
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png"
YiYi Xu's avatar
YiYi Xu committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
        )
        prompt = "A red cartoon frog, 4k"

        pipe_prior = KandinskyPriorPipeline.from_pretrained(
            "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
        )
        pipe_prior.to(torch_device)

        pipeline = KandinskyImg2ImgPipeline.from_pretrained(
            "kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16
        )
        pipeline = pipeline.to(torch_device)

        pipeline.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
346
        image_emb, zero_image_emb = pipe_prior(
YiYi Xu's avatar
YiYi Xu committed
347
348
349
            prompt,
            generator=generator,
            num_inference_steps=5,
350
351
            negative_prompt="",
        ).to_tuple()
YiYi Xu's avatar
YiYi Xu committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

        output = pipeline(
            prompt,
            image=init_image,
            image_embeds=image_emb,
            negative_image_embeds=zero_image_emb,
            generator=generator,
            num_inference_steps=100,
            height=768,
            width=768,
            strength=0.2,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (768, 768, 3)

        assert_mean_pixel_difference(image, expected_image)
371

372
373

@nightly
374
@require_torch_accelerator
375
class KandinskyImg2ImgPipelineNightlyTests(unittest.TestCase):
376
377
378
379
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
380
        backend_empty_cache(torch_device)
381

382
383
384
385
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
386
        backend_empty_cache(torch_device)
387

388
389
390
391
392
393
394
    def test_kandinsky_img2img_ddpm(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/kandinsky/kandinsky_img2img_ddpm_frog.npy"
        )

        init_image = load_image(
395
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/frog.png"
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
        )
        prompt = "A red cartoon frog, 4k"

        pipe_prior = KandinskyPriorPipeline.from_pretrained(
            "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
        )
        pipe_prior.to(torch_device)

        scheduler = DDPMScheduler.from_pretrained("kandinsky-community/kandinsky-2-1", subfolder="ddpm_scheduler")
        pipeline = KandinskyImg2ImgPipeline.from_pretrained(
            "kandinsky-community/kandinsky-2-1", scheduler=scheduler, torch_dtype=torch.float16
        )
        pipeline = pipeline.to(torch_device)

        pipeline.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        image_emb, zero_image_emb = pipe_prior(
            prompt,
            generator=generator,
            num_inference_steps=5,
            negative_prompt="",
        ).to_tuple()

        output = pipeline(
            prompt,
            image=init_image,
            image_embeds=image_emb,
            negative_image_embeds=zero_image_emb,
            generator=generator,
            num_inference_steps=100,
            height=768,
            width=768,
            strength=0.2,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (768, 768, 3)

        assert_mean_pixel_difference(image, expected_image)