test_kandinsky.py 10.4 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
# coding=utf-8
2
# Copyright 2025 HuggingFace Inc.
YiYi Xu's avatar
YiYi Xu committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
21
import pytest
YiYi Xu's avatar
YiYi Xu committed
22
23
24
25
26
import torch
from transformers import XLMRobertaTokenizerFast

from diffusers import DDIMScheduler, KandinskyPipeline, KandinskyPriorPipeline, UNet2DConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
27
from diffusers.utils import is_transformers_version
28
29

from ...testing_utils import (
30
    backend_empty_cache,
Dhruv Nair's avatar
Dhruv Nair committed
31
32
33
    enable_full_determinism,
    floats_tensor,
    load_numpy,
34
    require_torch_accelerator,
Dhruv Nair's avatar
Dhruv Nair committed
35
36
37
    slow,
    torch_device,
)
YiYi Xu's avatar
YiYi Xu committed
38
39
40
41
42
43
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference


enable_full_determinism()


44
class Dummies:
YiYi Xu's avatar
YiYi Xu committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def cross_attention_dim(self):
63
        return 32
YiYi Xu's avatar
YiYi Xu committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

    @property
    def dummy_tokenizer(self):
        tokenizer = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = MCLIPConfig(
            numDims=self.cross_attention_dim,
            transformerDimensions=self.text_embedder_hidden_size,
            hidden_size=self.text_embedder_hidden_size,
            intermediate_size=37,
            num_attention_heads=4,
            num_hidden_layers=5,
            vocab_size=1005,
        )

        text_encoder = MultilingualCLIP(config)
        text_encoder = text_encoder.eval()

        return text_encoder

    @property
    def dummy_unet(self):
        torch.manual_seed(0)

        model_kwargs = {
            "in_channels": 4,
            # Out channels is double in channels because predicts mean and variance
            "out_channels": 8,
            "addition_embed_type": "text_image",
            "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
            "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
            "mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "layers_per_block": 1,
            "encoder_hid_dim": self.text_embedder_hidden_size,
            "encoder_hid_dim_type": "text_image_proj",
            "cross_attention_dim": self.cross_attention_dim,
            "attention_head_dim": 4,
            "resnet_time_scale_shift": "scale_shift",
            "class_embed_type": None,
        }

        model = UNet2DConditionModel(**model_kwargs)
        return model

    @property
    def dummy_movq_kwargs(self):
        return {
            "block_out_channels": [32, 64],
            "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
            "in_channels": 3,
            "latent_channels": 4,
            "layers_per_block": 1,
            "norm_num_groups": 8,
            "norm_type": "spatial",
            "num_vq_embeddings": 12,
            "out_channels": 3,
            "up_block_types": [
                "AttnUpDecoderBlock2D",
                "UpDecoderBlock2D",
            ],
            "vq_embed_dim": 4,
        }

    @property
    def dummy_movq(self):
        torch.manual_seed(0)
        model = VQModel(**self.dummy_movq_kwargs)
        return model

    def get_dummy_components(self):
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        unet = self.dummy_unet
        movq = self.dummy_movq

        scheduler = DDIMScheduler(
            num_train_timesteps=1000,
            beta_schedule="linear",
            beta_start=0.00085,
            beta_end=0.012,
            clip_sample=False,
            set_alpha_to_one=False,
            steps_offset=1,
            prediction_type="epsilon",
            thresholding=False,
        )

        components = {
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "unet": unet,
            "scheduler": scheduler,
            "movq": movq,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed)).to(device)
        negative_image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(device)
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "horse",
            "image_embeds": image_embeds,
            "negative_image_embeds": negative_image_embeds,
            "generator": generator,
            "height": 64,
            "width": 64,
            "guidance_scale": 4.0,
            "num_inference_steps": 2,
            "output_type": "np",
        }
        return inputs

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

class KandinskyPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = KandinskyPipeline
    params = [
        "prompt",
        "image_embeds",
        "negative_image_embeds",
    ]
    batch_params = ["prompt", "negative_prompt", "image_embeds", "negative_image_embeds"]
    required_optional_params = [
        "generator",
        "height",
        "width",
        "latents",
        "guidance_scale",
        "negative_prompt",
        "num_inference_steps",
        "return_dict",
        "guidance_scale",
        "num_images_per_prompt",
        "output_type",
        "return_dict",
    ]
    test_xformers_attention = False

Marc Sun's avatar
Marc Sun committed
210
211
    supports_dduf = False

212
213
214
215
216
217
218
219
    def get_dummy_components(self):
        dummy = Dummies()
        return dummy.get_dummy_components()

    def get_dummy_inputs(self, device, seed=0):
        dummy = Dummies()
        return dummy.get_dummy_inputs(device=device, seed=seed)

220
221
222
    @pytest.mark.xfail(
        condition=is_transformers_version(">=", "4.56.2"), reason="Latest transformers changes the slices", strict=True
    )
YiYi Xu's avatar
YiYi Xu committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    def test_kandinsky(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.images

        image_from_tuple = pipe(
            **self.get_dummy_inputs(device),
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)

246
        expected_slice = np.array([1.0000, 1.0000, 0.2766, 1.0000, 0.5447, 0.1737, 1.0000, 0.4316, 0.9024])
YiYi Xu's avatar
YiYi Xu committed
247

248
249
250
251
252
253
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2, (
            f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
        )
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2, (
            f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
        )
YiYi Xu's avatar
YiYi Xu committed
254

255
    @require_torch_accelerator
256
257
258
259
260
261
262
263
    def test_offloads(self):
        pipes = []
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(torch_device)
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
264
        sd_pipe.enable_model_cpu_offload(device=torch_device)
265
266
267
268
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
269
        sd_pipe.enable_sequential_cpu_offload(device=torch_device)
270
271
272
273
274
275
276
277
278
279
280
281
        pipes.append(sd_pipe)

        image_slices = []
        for pipe in pipes:
            inputs = self.get_dummy_inputs(torch_device)
            image = pipe(**inputs).images

            image_slices.append(image[0, -3:, -3:, -1].flatten())

        assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
        assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3

YiYi Xu's avatar
YiYi Xu committed
282
283

@slow
284
@require_torch_accelerator
YiYi Xu's avatar
YiYi Xu committed
285
class KandinskyPipelineIntegrationTests(unittest.TestCase):
286
287
288
289
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
290
        backend_empty_cache(torch_device)
291

YiYi Xu's avatar
YiYi Xu committed
292
293
294
295
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
296
        backend_empty_cache(torch_device)
YiYi Xu's avatar
YiYi Xu committed
297
298
299
300
301
302
303
304
305
306
307
308
309

    def test_kandinsky_text2img(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/kandinsky/kandinsky_text2img_cat_fp16.npy"
        )

        pipe_prior = KandinskyPriorPipeline.from_pretrained(
            "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
        )
        pipe_prior.to(torch_device)

        pipeline = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
Dhruv Nair's avatar
Dhruv Nair committed
310
        pipeline.to(torch_device)
YiYi Xu's avatar
YiYi Xu committed
311
312
313
314
        pipeline.set_progress_bar_config(disable=None)

        prompt = "red cat, 4k photo"

315
        generator = torch.Generator(device=torch_device).manual_seed(0)
316
        image_emb, zero_image_emb = pipe_prior(
YiYi Xu's avatar
YiYi Xu committed
317
318
319
            prompt,
            generator=generator,
            num_inference_steps=5,
320
321
            negative_prompt="",
        ).to_tuple()
YiYi Xu's avatar
YiYi Xu committed
322

323
        generator = torch.Generator(device=torch_device).manual_seed(0)
YiYi Xu's avatar
YiYi Xu committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
        output = pipeline(
            prompt,
            image_embeds=image_emb,
            negative_image_embeds=zero_image_emb,
            generator=generator,
            num_inference_steps=100,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        assert_mean_pixel_difference(image, expected_image)