stable_diffusion.mdx 4.42 KB
Newer Older
1
2
3
4
5
6
7
8
# Stable diffusion pipelines

Stable Diffusion is a text-to-image _latent diffusion_ model created by the researchers and engineers from [CompVis](https://github.com/CompVis), [Stability AI](https://stability.ai/) and [LAION](https://laion.ai/). It's trained on 512x512 images from a subset of the [LAION-5B](https://laion.ai/blog/laion-5b/) dataset. This model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts. With its 860M UNet and 123M text encoder, the model is relatively lightweight and can run on consumer GPUs.

Latent diffusion is the research on top of which Stable Diffusion was built. It was proposed in [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) by Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer. You can learn more details about it in the [specific pipeline for latent diffusion](pipelines/latent_diffusion) that is part of 🤗 Diffusers.

For more details about how Stable Diffusion works and how it differs from the base latent diffusion model, please refer to the official [launch announcement post](https://stability.ai/blog/stable-diffusion-announcement) and [this section of our own blog post](https://huggingface.co/blog/stable_diffusion#how-does-stable-diffusion-work).

9
*Tips*:
10
11
- To tweak your prompts on a specific result you liked, you can generate your own latents, as demonstrated in the following notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb)

12
*Overview*:
13

14
| Pipeline | Tasks | Colab | Demo
15
16
17
18
|---|---|:---:|:---:|
| [pipeline_stable_diffusion.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py) | *Text-to-Image Generation* | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb) | [🤗 Stable Diffusion](https://huggingface.co/spaces/stabilityai/stable-diffusion)
| [pipeline_stable_diffusion_img2img.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py) | *Image-to-Image Text-Guided Generation* | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb) | [🤗 Diffuse the Rest](https://huggingface.co/spaces/huggingface/diffuse-the-rest)
| [pipeline_stable_diffusion_inpaint.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py) | **Experimental** – *Text-Guided Image Inpainting* | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb) | Coming soon
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
## Tips

If you want to use all possible use cases in a single `DiffusionPipeline` you can either:
- Make use of the [Stable Diffusion Mega Pipeline](https://github.com/huggingface/diffusers/tree/main/examples/community#stable-diffusion-mega) or 
- Make use of the `components` functionality to instantiate all components in the most memory-efficient way:

```python
>>> from diffusers import (
...     StableDiffusionPipeline,
...     StableDiffusionImg2ImgPipeline,
...     StableDiffusionInpaintPipeline,
... )

>>> img2text = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
>>> img2img = StableDiffusionImg2ImgPipeline(**img2text.components)
>>> inpaint = StableDiffusionInpaintPipeline(**img2text.components)

>>> # now you can use img2text(...), img2img(...), inpaint(...) just like the call methods of each respective pipeline
```

40
41
42
43
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

## StableDiffusionPipeline
44
[[autodoc]] StableDiffusionPipeline
45
46
47
	- __call__
	- enable_attention_slicing
	- disable_attention_slicing
48

49
## StableDiffusionImg2ImgPipeline
50
[[autodoc]] StableDiffusionImg2ImgPipeline
51
52
53
	- __call__
	- enable_attention_slicing
	- disable_attention_slicing
54

55
## StableDiffusionInpaintPipeline
56
[[autodoc]] StableDiffusionInpaintPipeline
57
58
59
	- __call__
	- enable_attention_slicing
	- disable_attention_slicing