test_stable_unclip.py 8.61 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import gc
import unittest

import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    DDPMScheduler,
    PriorTransformer,
    StableUnCLIPPipeline,
    UNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
16
17
18
19
20
21
22
23
24
25
26
from diffusers.utils.testing_utils import (
    backend_empty_cache,
    backend_max_memory_allocated,
    backend_reset_max_memory_allocated,
    backend_reset_peak_memory_stats,
    enable_full_determinism,
    load_numpy,
    nightly,
    require_torch_accelerator,
    torch_device,
)
Will Berman's avatar
Will Berman committed
27

28
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
29
30
31
32
33
34
from ..test_pipelines_common import (
    PipelineKarrasSchedulerTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
    assert_mean_pixel_difference,
)
Will Berman's avatar
Will Berman committed
35
36


37
enable_full_determinism()
38
39


40
41
42
class StableUnCLIPPipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
Will Berman's avatar
Will Berman committed
43
    pipeline_class = StableUnCLIPPipeline
44
45
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
46
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
47
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
Will Berman's avatar
Will Berman committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

    # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
    test_xformers_attention = False

    def get_dummy_components(self):
        embedder_hidden_size = 32
        embedder_projection_dim = embedder_hidden_size

        # prior components

        torch.manual_seed(0)
        prior_tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        torch.manual_seed(0)
        prior_text_encoder = CLIPTextModelWithProjection(
            CLIPTextConfig(
                bos_token_id=0,
                eos_token_id=2,
                hidden_size=embedder_hidden_size,
                projection_dim=embedder_projection_dim,
                intermediate_size=37,
                layer_norm_eps=1e-05,
                num_attention_heads=4,
                num_hidden_layers=5,
                pad_token_id=1,
                vocab_size=1000,
            )
        )

        torch.manual_seed(0)
        prior = PriorTransformer(
            num_attention_heads=2,
            attention_head_dim=12,
            embedding_dim=embedder_projection_dim,
            num_layers=1,
        )

        torch.manual_seed(0)
        prior_scheduler = DDPMScheduler(
            variance_type="fixed_small_log",
            prediction_type="sample",
            num_train_timesteps=1000,
            clip_sample=True,
            clip_sample_range=5.0,
            beta_schedule="squaredcos_cap_v2",
        )

        # regular denoising components

        torch.manual_seed(0)
        image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedder_hidden_size)
        image_noising_scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2")

        torch.manual_seed(0)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        torch.manual_seed(0)
        text_encoder = CLIPTextModel(
            CLIPTextConfig(
                bos_token_id=0,
                eos_token_id=2,
                hidden_size=embedder_hidden_size,
                projection_dim=32,
                intermediate_size=37,
                layer_norm_eps=1e-05,
                num_attention_heads=4,
                num_hidden_layers=5,
                pad_token_id=1,
                vocab_size=1000,
            )
        )

        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
            up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"),
            block_out_channels=(32, 64),
            attention_head_dim=(2, 4),
            class_embed_type="projection",
            # The class embeddings are the noise augmented image embeddings.
            # I.e. the image embeddings concated with the noised embeddings of the same dimension
            projection_class_embeddings_input_dim=embedder_projection_dim * 2,
            cross_attention_dim=embedder_hidden_size,
            layers_per_block=1,
            upcast_attention=True,
            use_linear_projection=True,
        )

        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_schedule="scaled_linear",
            beta_start=0.00085,
            beta_end=0.012,
            prediction_type="v_prediction",
            set_alpha_to_one=False,
            steps_offset=1,
        )

        torch.manual_seed(0)
        vae = AutoencoderKL()

        components = {
            # prior components
            "prior_tokenizer": prior_tokenizer,
            "prior_text_encoder": prior_text_encoder,
            "prior": prior,
            "prior_scheduler": prior_scheduler,
            # image noising components
            "image_normalizer": image_normalizer,
            "image_noising_scheduler": image_noising_scheduler,
            # regular denoising components
            "tokenizer": tokenizer,
            "text_encoder": text_encoder,
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "prior_num_inference_steps": 2,
181
            "output_type": "np",
Will Berman's avatar
Will Berman committed
182
183
184
185
186
187
188
189
190
191
192
193
194
        }
        return inputs

    # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
    # because UnCLIP GPU undeterminism requires a looser check.
    def test_attention_slicing_forward_pass(self):
        test_max_difference = torch_device == "cpu"

        self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference)

    # Overriding PipelineTesterMixin::test_inference_batch_single_identical
    # because UnCLIP undeterminism requires a looser check.
    def test_inference_batch_single_identical(self):
195
        self._test_inference_batch_single_identical(expected_max_diff=1e-3)
Will Berman's avatar
Will Berman committed
196

197
198
199
200
    @unittest.skip("Test not supported because of the use of `_encode_prior_prompt()`.")
    def test_encode_prompt_works_in_isolation(self):
        pass

Will Berman's avatar
Will Berman committed
201

202
@nightly
203
@require_torch_accelerator
Will Berman's avatar
Will Berman committed
204
class StableUnCLIPPipelineIntegrationTests(unittest.TestCase):
205
206
207
208
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
209
        backend_empty_cache(torch_device)
210

Will Berman's avatar
Will Berman committed
211
212
213
214
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
215
        backend_empty_cache(torch_device)
Will Berman's avatar
Will Berman committed
216
217
218
219
220
221
222
223

    def test_stable_unclip(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy"
        )

        pipe = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l", torch_dtype=torch.float16)
        pipe.set_progress_bar_config(disable=None)
224
225
226
227
        # stable unclip will oom when integration tests are run on a V100,
        # so turn on memory savings
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()
Will Berman's avatar
Will Berman committed
228
229

        generator = torch.Generator(device="cpu").manual_seed(0)
230
        output = pipe("anime turtle", generator=generator, output_type="np")
Will Berman's avatar
Will Berman committed
231
232
233
234
235
236
237
238

        image = output.images[0]

        assert image.shape == (768, 768, 3)

        assert_mean_pixel_difference(image, expected_image)

    def test_stable_unclip_pipeline_with_sequential_cpu_offloading(self):
239
240
241
        backend_empty_cache(torch_device)
        backend_reset_max_memory_allocated(torch_device)
        backend_reset_peak_memory_stats(torch_device)
Will Berman's avatar
Will Berman committed
242
243
244
245
246
247
248
249
250
251
252
253
254

        pipe = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l", torch_dtype=torch.float16)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()

        _ = pipe(
            "anime turtle",
            prior_num_inference_steps=2,
            num_inference_steps=2,
            output_type="np",
        )

255
        mem_bytes = backend_max_memory_allocated(torch_device)
Will Berman's avatar
Will Berman committed
256
257
        # make sure that less than 7 GB is allocated
        assert mem_bytes < 7 * 10**9